ECE/ENGRD 2100

Introduction to Circuits for ECE

Lecture 9

Large-Signal Analysis of Nonlinear Circuits

Announcements

- Upcoming due dates:
- Prelab 2 due by 12:20 pm on Tuesday February 12, 2019
- Homework 2 due by 11:59 pm on Friday February 15, 2019
- Lab report 2 due by 11:59 pm on Friday February 22, 2019
- Lab 2 is this week (starting Tuesday February 12, 2019)
- Prelim 1 on Thursday February 21, 2019 from 7:30-9 pm in 203 Phillips

Examples of Two-Terminal Nonlinear Devices

Analysis of Circuits with Nonlinear Devices

- Following techniques still work when circuits have nonlinear components:
- Brute Force (KVL, KCL and Element Constitutive Relationships)
- Mesh and Loop Analysis
- Node Analysis

 non-linear device
- Superposition does not work when circuits have nonlinear components

Analysis of Circuits with One Nonlinear Device

 or Norton Equivalent

Nonlinear Device Circuit - Example 1

$$
\stackrel{i_{\mathrm{Q}}}{=}=\frac{\left\{\begin{array}{ll}
0 & \text { if } v_{\mathrm{Q}}<1 \mathrm{~V} \\
0.5\left(v_{\mathrm{Q}}-1\right)^{2} \mathrm{~mA} & \text { if } v_{\mathrm{Q}} \geq 1 \mathrm{~V}
\end{array}\right]}{R}
$$

Try Assuming $V_{Q} \subset 1 V \Rightarrow i_{Q}=0$

$$
\frac{5-V_{Q}}{1 k \Omega}=0 \quad \Rightarrow \quad \frac{V_{Q}=5 V}{}
$$

Not consistent with assumption

Nonlinear Device Circuit - Example 1 (Cont.)

$$
i_{\mathrm{Q}}= \begin{cases}0 & \text { if } \quad v_{\mathrm{Q}}<1 \mathrm{~V} \\ 0.5\left(v_{\mathrm{Q}}-1\right)^{2} \mathrm{~mA} & \text { if } v_{\mathrm{Q}} \geq 1 \mathrm{~V}\end{cases}
$$

$T_{r y} V_{Q} \geqslant 1 v \Rightarrow i_{Q}=0.5\left(V_{Q}-1\right)^{2} m A$

$$
\frac{5-V_{Q}}{1 k \Omega}=i_{Q}=0.5\left(V_{Q}-1\right)^{2} m A \Rightarrow 5-V_{Q}=0.5\left(V_{Q}-1\right)^{2}
$$

$$
10-2 V_{Q}=V_{Q}^{2}-2 \sigma_{Q}+1 \Rightarrow V_{Q}^{2}=9 \Rightarrow V_{Q}= \pm 3
$$

-re value is non-plysical

$$
\begin{aligned}
& \Rightarrow \quad V_{Q}=+3 V \\
& i_{Q}=0.5(3-1)^{2}=2 \mathrm{~mA}
\end{aligned}
$$

Example 1: Graphical Analysis using Load Line

$$
\begin{aligned}
& i_{x}=i_{Q} \\
& v_{x}=v_{Q}
\end{aligned}
$$

v_{x} vs. i_{x}

$$
v_{x}=5 v-1 k \Omega(i x)
$$

$$
i_{\mathrm{Q}}=\left\{\begin{array}{lll}
0 & \text { if } & v_{\mathrm{Q}}<1 \mathrm{~V} \\
0.5\left(v_{\mathrm{Q}}-1\right)^{2} \mathrm{~mA} & \text { if } & v_{\mathrm{Q}} \geq 1 \mathrm{~V}
\end{array}\right.
$$

Zener Diode

Engineered

Reverse
Breakdown

- Behaves mostly like a normal diode
- Reverse breakdown occurs typically with a sharper knee at designed voltage

Regulated Power Supply using Zener Diode

q-3iv. Regulated Power Supply (Cont.)

$$
\begin{aligned}
\mathrm{V}_{\mathrm{S}} & =9 \mathrm{~V} \\
\mathrm{R}_{\mathrm{S}} & =3 \Omega \\
\mathrm{~V}_{\mathrm{Z}} & =5 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& 9-3 i_{L}=5 \\
& \Rightarrow 3 i_{L}=4 \Rightarrow i_{L}=1.33 \mathrm{~A}
\end{aligned}
$$

Piecewise Linear (Approximate) Analysis

$$
\mathrm{v}_{\mathrm{S}}-\mathrm{R}_{\mathrm{S}} i_{\mathrm{L}} \bigoplus_{\square}^{\mathrm{R}_{\mathrm{S}}+\mathbb{D}^{+} i_{\mathrm{X}}+}
$$

