## ECE/ENGRD 2100

## Introduction to Circuits for ECE

## Lecture 38

Mutual Inductance and Transformers

## Announcements

- Recommended Reading:
- Textbook Chapter 6.4-6.5 and Chapter 9.10-9.11
- Upcoming due dates:
- Homework 5 due by 11:59 pm on Monday April 29, 2019
- Prelab 6 due by 11:59 pm on Monday April 29, 2019
- Lab report 6 due by 11:59 pm on Friday May 3, 2019
- Homework 6 due by 11:59 pm on Tuesday May 7, 2019


## Inductance (Self-Inductance)



Faraday's Law: $\quad v_{\mathrm{L}}=\frac{d \lambda_{\mathrm{L}}}{d t} \longleftarrow$

$$
\begin{aligned}
& \lambda_{\mathrm{L}}=N \Phi=N(\underline{B A})=N(\underline{\mu H}) A=\mu N\left(\frac{N i_{\mathrm{L}}}{\underline{l}}\right) A \\
& \Rightarrow \lambda_{\mathrm{L}}=\frac{\mu A N^{2} i_{\mathrm{L}}}{l} \quad\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)
\end{aligned}
$$

$$
\lambda_{\mathrm{L}}=\mathrm{L} i_{\mathrm{L}}
$$

$$
\mathrm{L} \equiv \frac{d \lambda_{\mathrm{L}}}{d i_{\mathrm{L}}}=\frac{\mu \mathrm{A} N^{2}}{l}=\mathcal{P} N^{2}
$$



Mutual Inductance

$v_{2}$ seff-inductance nutue indutance
Use right-hand-rule to determine direction of flux


$$
v_{1}=L_{1} \frac{d i_{1}}{d t}+M \frac{d i_{2}}{d t}
$$



$$
v_{2}=M \frac{d i_{1}}{d t}+L_{2} \frac{d i_{2}}{d t}
$$

## Dot Convention



$$
\begin{aligned}
& v_{1}=L_{1} \frac{d i_{1}}{d t}-M \frac{d i_{2}}{d t} \\
& v_{2}=-M \frac{d i_{1}}{d t}+L_{2} \frac{d i_{2}}{d t}
\end{aligned}
$$

Relationship Between Mutual and Self Inductances


$$
\begin{aligned}
& \underline{\mathrm{L}_{1}}=\frac{d \lambda_{1}}{d i_{1}}=\mathcal{P}_{1} N_{1}^{2}=\left(\mathcal{P}_{11}+\mathcal{P}_{12}\right) N_{1}^{2} \\
& \underline{\mathrm{~L}_{2}}=\frac{d \lambda_{2}}{d i_{2}}=\mathcal{P}_{2} N_{2}^{2}=\underline{\left(\mathcal{P}_{22}+\mathcal{P}_{21}\right) N_{2}^{2}} \\
& \underline{\mathrm{M}}=\frac{d \lambda_{2}}{d i_{1}}=\frac{d \lambda_{1}}{d i_{2}}=\underline{\mathcal{P}_{21} N_{2} N_{1}=\mathcal{P}_{21} N_{12} N_{12}}
\end{aligned}
$$

$$
\begin{aligned}
& M_{21}=\frac{\lambda_{21}}{i_{1}}=\frac{N_{2} P_{21} N_{1}, i}{\dot{K}_{1}}=P_{21} N_{2} N_{1}=P_{12} N_{1} N_{2}=M_{12} \equiv M \\
& \left.\left.\underline{\mathrm{~L}_{1} \mathrm{~L}_{2}}=\underline{\mathcal{P}_{1} N_{1}^{2} \mathcal{P}_{2} N_{2}^{2}}=\underline{\left(\mathcal{P}_{11}+\mathcal{P}_{12}\right.}\right) \underline{\left(\mathcal{P}_{22}+\mathcal{P}_{21}\right.}\right) N_{1}^{2} N_{2}^{2}=P_{12} P_{21}\left(1+\frac{P_{11}}{P_{21}}\right)\left(1+\frac{P_{22}}{P_{12}}\right) N_{1}^{2} N_{2}^{2} \\
& L_{1} L_{2}=(\underbrace{P_{12} N_{1} N_{2}}_{M})(\underbrace{P_{21} N_{1} N_{2}}_{M})\left(1+\frac{P_{11}}{P_{21}}\right)\left(\frac{\left.1+\frac{P_{22}}{P_{12}}\right), ~\left(L^{2}\right.}{}\right) \\
& M=\frac{1}{\sqrt{\left(1+\frac{P_{11}}{P_{21}}\right)\left(1+\frac{P_{22}}{P_{12}}\right)} \sqrt{L_{1} L_{2}} \equiv k \sqrt{L_{1} L_{2}} \quad 0 \leqslant k \leqslant 1} \begin{array}{l}
\text { Coupling Col ficient }
\end{array}
\end{aligned}
$$

Ideal Transformer


$$
\left.\begin{array}{l}
v_{1}=\frac{d \lambda_{1}}{d t}=\frac{d N_{1} \phi}{d t}=N_{1} \frac{d \phi}{d t} \\
v_{2}=\frac{d \lambda_{2}}{d t}=\frac{d N_{2} \phi}{d t}=N_{2} \frac{d \phi}{d t}
\end{array}\right]
$$

$$
\frac{v_{2}}{v_{1}}=\frac{N_{2} \frac{d \phi}{d t}}{N_{1} \frac{d \phi}{d t}}=\frac{N_{2}}{N_{1}}
$$

Lossless and stores no energy $\Rightarrow p_{1}=p_{2} \Rightarrow v_{1} i_{1}=-v_{2} i_{2}$

$$
\Rightarrow \frac{i_{2}}{i_{1}}=-\frac{v_{1}}{v_{2}}=-\frac{N_{1}}{N_{2}}
$$

$$
\frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}} \quad \& \quad \frac{i_{2}}{i_{1}}=-\frac{N_{1}}{N_{2}}
$$

ECE/ENGRD $2100 \quad 7$

Ideal Transformer - Impedance Transformation


$$
\frac{\widehat{V}_{2}}{\widehat{\mathrm{~V}}_{1}}=\frac{N_{2}}{N_{1}}
$$

$$
\frac{\hat{\mathrm{I}}_{2}}{\hat{\mathrm{I}}_{1}}=-\frac{N_{1}}{N_{2}}
$$



$$
\begin{aligned}
& Z_{L}=\frac{\hat{V}_{L}}{\hat{I}_{L}} \\
& Z_{T H} \equiv \frac{\hat{V}_{1}}{\hat{I}_{1}}=\frac{N_{1}}{N_{2}} \hat{V}_{L} \cdot \frac{N_{1}}{N_{2}} \frac{1}{\hat{I}_{L}}
\end{aligned}
$$

$$
\hat{V}_{1}=\frac{N_{1}}{N_{2}} \hat{V}_{2}
$$

$$
\Rightarrow Z_{T H}=\left(\frac{N_{1}}{N_{2}}\right)^{2} \frac{\hat{V}_{L}}{{\underset{I}{L}}^{I_{L}}}
$$

## Ideal Transformer - Dependent Source Model



Non-Ideal Transformer Model


$$
\begin{aligned}
& L_{1}=L_{l_{1}}+L_{\mu_{1}} \\
& L_{2}=L_{l_{2}}+\left(\frac{N_{2}}{N_{1}}\right)^{2} L_{\mu_{1}} \\
& M=\frac{N_{2}}{N_{1}} L \mu_{1}
\end{aligned}
$$

$]$
Ideal Transformer

$$
\left.\begin{array}{l}
L_{l_{1}}=0 \\
L_{l_{2}}=0
\end{array}\right\} \Rightarrow \begin{aligned}
& L_{1}=L_{\mu_{1}} \\
& L_{2}=\left(\frac{N_{2}}{N_{1}}\right)^{2} L_{\mu_{1}} \\
& M=\frac{N_{2}}{N_{1}} L_{\mu_{1}} \\
& k=\frac{M}{\sqrt{L_{1} L_{2}}}=\frac{\frac{N_{2}}{N_{1}} L_{\mu_{1}}}{\sqrt{L_{\mu_{1}\left(\frac{N_{2}}{N_{1}}\right)^{2} L_{\mu_{1}}}^{\text {ECF/ENGD 2100 }}}=1} \\
& L_{\mu_{1} \rightarrow \infty}
\end{aligned}
$$

ECE/ENGRD $2100 \quad 10$

