ECE/ENGRD 2100

Introduction to Circuits for ECE

Lecture 29

Magnitude and Phase versus Frequency Plots

- Recommended Reading:
 - Textbook Chapter 9 and Chapter 14
- Upcoming due dates:
 - Lab report 4 due by 11:59 pm on Monday April 8, 2019
 - Prelab 5 due by 11:59 pm on Monday April 15, 2019
 - Homework 5 due by 11:59 pm on Wednesday April 17, 2019
 - Lab report 5 due by 11:59 pm on Friday April 19, 2019

ECE/ENGRD 2100 3

Sinusoidal Steady State Analysis using Impedances

- 1. Create impedance (frequency domain) model of the circuit
 - Replace sinusoidal sources by the equivalent phasor

$$v_{\rm IN}(t) = V_{\rm I} \cos(\omega t + \phi_{\rm I}) \rightarrow V_{\rm I} e^{j\phi_{\rm I}}$$

- Replace circuit elements by their impedances models
 - $R \to R$ $L \to j\omega L$ $C \to \frac{1}{i\omega C}$
- 2. Solve frequency domain circuit (with algebraic constitutive relationships) for phasors of interest
 - Solve frequency domain circuit like a resistive circuit \rightarrow
- 3. Convert phasors of interest into time domain by multiplying by $e^{j\omega t}$ and taking the real part

$$v_{\rm C}(t) = \operatorname{Re}\left\{\widehat{V}_{\rm C}e^{j\omega t}\right\} = \operatorname{Re}\left\{V_{\rm C}e^{j\phi_{\rm C}}e^{j\omega t}\right\} = \underbrace{V_{\rm C}\cos(\omega t + \phi_{\rm C})}_{=}$$

Circuit Analysis using Impedances – Example 2

Circuit Behavior in Frequency Domain

Quite often we are not interested in going back into the time domain and simply interested in the behavior of the output as a function of the frequency of the driving sinusoid (e.g., when designing filters)

Frequency Domain Circuit Analysis

Transfer Function

Transfer Function Magnitude and Phase

Magnitude and Phase versus Frequency Plots

Impedance Plots

Impedance of Parallel L-C Circuit

