ECE/ENGRD 2100

Introduction to Circuits for ECE

Lecture 29

Magnitude and Phase versus Frequency Plots

Announcements

- Recommended Reading:
- Textbook Chapter 9 and Chapter 14
- Upcoming due dates:
- Lab report 4 due by 11:59 pm on Monday April 8, 2019
- Prelab 5 due by 11:59 pm on Monday April 15, 2019
- Homework 5 due by 11:59 pm on Wednesday April 17, 2019
- Lab report 5 due by 11:59 pm on Friday April 19, 2019

Sinusoidal Steady State Analysis using Impedances

1. Create impedance (frequency domain) model of the circuit

- Replace sinusoidal sources by the equivalent phasor

$$
v_{\mathrm{IN}}(t)=\mathrm{V}_{\mathrm{I}} \cos \left(\omega t+\phi_{\mathrm{I}}\right) \rightarrow \mathrm{V}_{\mathrm{I}} e^{j \phi_{\mathrm{I}}}
$$

- Replace circuit elements by their impedances models

$$
\mathrm{R} \rightarrow \mathrm{R} \quad \mathrm{~L} \rightarrow j \omega \mathrm{~L} \quad \mathrm{C} \rightarrow \frac{1}{j \omega \mathrm{C}}
$$

2. Solve frequency domain circuit (with algebraic constitutive relationships) for phasors of interest

- Solve frequency domain circuit like a resistive circuit

3. Convert phasors of interest into time domain by multiplying by $e^{j \omega t}$ and taking the real part

$$
\begin{gathered}
v_{\mathrm{C}}(t)=\operatorname{Re}\left\{\widehat{V}_{\mathrm{C}} e^{j \omega t}\right\}=\operatorname{Re}\left\{\mathrm{V}_{\mathrm{C}} e^{j \phi_{\mathrm{C}}} e^{j \omega t}\right\}=\underline{\underline{V_{\mathrm{C}}} \cos \left(\omega t+\phi_{\mathrm{C}}\right)} \\
=
\end{gathered}
$$

Circuit Analysis using Impedances - Example 2

$$
v_{\mathrm{IN}}(t)=\mathrm{V}_{\mathrm{I}} \cos \left(\omega t+\phi_{\mathrm{I}}\right)
$$

$$
\hat{I}_{L}=\frac{\hat{V}_{1 N}}{R+j \omega L}=\frac{V_{I} e^{j \phi_{I}}}{\sqrt{R^{2}+(\omega L)^{2}}} e^{-j \tan ^{-1}\left(\frac{\omega L}{R}\right)}
$$

$$
\begin{aligned}
& i_{L}(t)=\operatorname{Re}\left\{\hat{I}_{L} e^{j \omega t}\right\}=\operatorname{Re}\left\{\frac{V_{I} e^{j\left(\omega t+\phi_{I}-\tan ^{-1}(\omega L / R)\right.}}{\sqrt{R^{2}+(\omega L)^{2}}}\right\} \\
& i_{L}(t)=\frac{V_{I}}{\sqrt{R^{2}+(\omega L)^{2}}} \cos \left(\omega t+\phi_{I}-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right.
\end{aligned}
$$

Circuit Behavior in Frequency Domain

$$
\hat{\mathrm{I}}_{\mathrm{L}}=\frac{\widehat{\mathrm{V}}_{\mathrm{IN}} e^{-j \tan ^{-1}(\omega \mathrm{~L} / \mathrm{R})}}{\sqrt{\mathrm{R}^{2}+(\omega \mathrm{L})^{2}}}
$$

$v_{\mathrm{IN}}(t)=\mathrm{V}_{\mathrm{I}} \cos \left(\omega t+\phi_{\mathrm{I}}\right)$

Quite often we are not interested in going back into the time domain and simply interested in the behavior of the output as a function of the frequency of the driving sinusoid (e.g., when designing filters)

Frequency Domain Circuit Analysis

$$
\begin{aligned}
v_{\mathrm{IN}}(t) & =V_{I} \cos \left(\omega t+\phi_{\mathrm{I}}\right) \\
& +V_{2} \cos \left(\omega_{2} t+\phi_{2}\right) \\
& +V_{3} \cos \left(\omega_{3} t+\phi_{3}\right)
\end{aligned}
$$

$$
\hat{V}_{L}=\frac{j \omega L}{R+j \omega L} \hat{V}_{1 N}
$$

Transfer Function $H(j \omega) \equiv \frac{\hat{V}_{L}}{\hat{V}_{1 N}}=\frac{j \omega L}{R+j \omega L}$

Transfer Function

$$
\begin{array}{r}
\widehat{V}_{L}=\frac{j \omega L}{R+j \omega L} \widehat{V}_{I N} \\
H(j \omega) \equiv \frac{\hat{V}_{L}}{\hat{V}_{I N}}=\frac{j \omega L}{R+j \omega L}
\end{array}
$$

Low Free: $H(j \omega) \approx \frac{j \omega L}{R}$ if $R \gg \omega L \Rightarrow \omega \ll \frac{R}{L}$ $\frac{\text { Corner Freq: }}{\omega=R / L} H(j \omega)=\frac{j \omega t}{\omega t+j \omega t}=\frac{j}{1+j}$ if $R=\omega L \Rightarrow \omega=\frac{R}{L}$ High Freq: $H(j \omega) \approx \frac{j \omega L}{j \omega L}=1$ if $R \ll \omega L \Rightarrow \omega \gg \frac{R}{L}$

Transfer Function Magnitude and Phase

Magnitude and Phase versus Frequency Plots

ECE/ENGRD 2100

Impedance Plots

Impedance of Parallel L-C Circuit

$$
\begin{aligned}
& z_{1 N}=\frac{1}{j \omega c} \| j \omega L \\
& z_{1 N}=\frac{\frac{1}{j \omega c} \cdot j \omega L}{\frac{1}{j \omega C}+j \omega L}=\frac{j \omega L}{1-\omega^{2} L C}
\end{aligned}
$$

$$
z_{\mathbb{N}}= \begin{cases}\frac{j \omega L}{1}=j \omega L & \text { low Fro (looks like L) } \\ \frac{j \omega \phi}{-\omega^{\sigma} \nmid C}=\frac{1}{j \omega C} & \text { Hog Fro (looks like C) }\end{cases}
$$

at ω where $\frac{1}{j \omega C}=j \omega L$

