ECE/ENGRD 2100

Introduction to Circuits for ECE

Lecture 27

Sinusoidal Steady State Analysis Using Impedances

Announcements

- Recommended Reading:
- Textbook Chapter 9
- Upcoming due dates:
- Lab report 4 due by 11:59 pm on Monday April 8, 2019
- Prelab 5 due by 12:20 pm on Tuesday April 9, 2019
- Homework 5 due by 11:59 pm on Friday April 12, 2019
- Lab report 5 due by 11:59 pm on Friday April 19, 2019
- Prelim 2 on Thursday March 28, 2019 from 7:30-9 pm in 203 Phillips
- Make up exams today (Wednesday March 27):
- 3:30-5 pm in 354 Duffield
- $5-6: 30 \mathrm{pm}$ in 354 Duffield
- Will cover material through Lecture 24
- Prelim is closed-book and closed-notes
- Two double-sided page formula sheet is allowed
- Bring a calculator

Phasors

Phasor

$$
\widehat{V}_{X}=V_{X} e^{j \phi_{\mathrm{X}}}
$$

Phasor has magnitude and phase
Alternate notation: $\widehat{\mathrm{V}}_{\mathrm{X}}=\mathrm{V}_{\mathrm{X}} \angle \phi_{\mathrm{X}}$

Rotating Phasor (Complex Exponential)

$$
\widehat{\mathrm{V}}_{\mathrm{X}} e^{j \omega t}=\mathrm{V}_{\mathrm{X}} e^{j \phi_{\mathrm{X}}} e^{j \omega t}
$$

Sinusoidal Steady State Analysis using Phasors

1. Express drive as real part of a rotating phasor (phasor $x e^{j \omega t}$)

$$
v_{\mathrm{IN}}(t)=\mathrm{V}_{\mathrm{I}} \cos \left(\omega t+\phi_{\mathrm{I}}\right)=\operatorname{Re}\left\{\mathrm{V}_{\mathrm{I}} e^{j\left(\omega t+\phi_{\mathrm{I}}\right)}\right\}=\operatorname{Re}\left\{\mathrm{V}_{\mathrm{I}} e^{j \phi_{\mathrm{I}}} e^{j \omega t}\right\}=\operatorname{Re}\left\{\widehat{\mathrm{V}}_{\mathrm{I}} e^{j \omega t}\right\}
$$

2. Calculate response to the rotating phasor

3. Take real part of the response to the rotating phasor

$$
v_{\mathrm{C}}(t)=\operatorname{Re}\left\{\widehat{\mathrm{V}}_{\mathrm{C}} e^{j \omega t}\right\}=\operatorname{Re}\left\{\mathrm{V}_{\mathrm{C}} e^{j \phi_{\mathrm{C}}} e^{j \omega t}\right\}=\mathrm{V}_{\mathrm{C}} \cos \left(\omega t+\phi_{\mathrm{C}}\right)
$$

Phasor Analysis using Circuit's Differential Equation

Sinusoidal Steady State Solution (Particular Solution): $\tilde{v}_{\mathrm{C}, \mathrm{p}}(t)=\widehat{\nabla}_{\mathrm{C}} \mathrm{e}^{j \omega t}$
$\mathrm{RC} \frac{d \tilde{v}_{\mathrm{C}, \mathrm{p}}}{d t}+\tilde{v}_{\mathrm{C}, \mathrm{p}}=\tilde{v}_{\mathrm{IN}} \Rightarrow \mathrm{RCj} \mathrm{\omega} \widehat{\mathrm{~V}}_{\mathrm{C}} e^{j \omega t}+\widehat{\mathrm{V}}_{\mathrm{C}} e^{j \omega t}=\mathrm{V}_{\mathrm{I}} e^{j \phi_{\mathrm{I}}} e^{j \omega t} \Rightarrow \widehat{\mathrm{~V}}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{I}} e^{j \phi_{\mathrm{I}}}}{1+j \mathrm{RC} \omega}$
$\Rightarrow \widehat{\mathrm{V}}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{I}} e^{j \phi_{\mathrm{I}}}}{\sqrt{1+(\mathrm{RC} \omega)^{2}} e^{j \tan ^{-1}(\mathrm{RC} \omega)}} \Rightarrow \widehat{\mathrm{V}}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{I}}}{\sqrt{1+(\mathrm{RC} \omega)^{2}}} e^{j\left(\phi_{\mathrm{I}}-\tan ^{-1}(\mathrm{RC} \omega)\right)}$
$\Rightarrow v_{\mathrm{C}, \mathrm{p}}(t)=\operatorname{Re}\left\{\widehat{\mathrm{V}}_{\mathrm{C}} e^{j \omega t}\right\}=\operatorname{Re}\left\{\frac{\mathrm{V}_{\mathrm{I}}}{\sqrt{1+(\mathrm{RC} \omega)^{2}}} e^{j\left(\omega t+\phi_{\mathrm{I}}-\tan ^{-1}(\mathrm{RC} \omega)\right)}\right\}$
$\Rightarrow \quad v_{\mathrm{C}, \mathrm{p}}(t)=\frac{\mathrm{V}_{\mathrm{I}}}{\sqrt{1+(\mathrm{RC} \omega)^{2}}} \cos \left(\omega t+\phi_{\mathrm{I}}-\tan ^{-1}(\mathrm{RC} \omega)\right)$

Sinusoidal Steady State Analysis - Alternate Approach

\Downarrow Diff. Eqn.

$$
\mathrm{RC} \frac{d v_{\mathrm{C}}}{d t}+v_{\mathrm{C}}=v_{\mathrm{IN}}
$$

Real World

Phasor Response of Components - Impedance

Sinusoidal Steady State Analysis - Alternate Approach

\Downarrow Diff. Eqn.

$$
\mathrm{RC} \frac{d v_{\mathrm{C}}}{d t}+v_{\mathrm{C}}=v_{\mathrm{IN}}
$$

Real World

Solve

Impedance Summary

- In phasor (frequency) domain, for linear R, L and C, phasor voltage $\widehat{\nabla}$ and phasor current \hat{I} are related by algebraic expressions
- In time domain, for linear L and C , voltage $v(t)$ and current $i(t)$ related by differentials
- Impedance $Z \equiv \frac{\hat{V}}{\hat{1}}$
- Impedance has units of ohms [Ω]
- In general, Z is a complex number: $\mathrm{Z}=\underline{\mathrm{R}}+j \underline{\mathrm{X}}=|\mathrm{Z}| e^{j \not x \mathrm{Z}}$

R is "resistance"; X is called "reactance"

- Inverse of Impedance is called "admittance" $\mathrm{Y}=\frac{1}{\mathrm{Z}}=\mathrm{G}+j \mathrm{~B}$

G is "conductance"; B is called "susceptance"

- Impedances can be treated the same way resistances are treated

Combining Impedance

- Impedance follow the same combination rules as resistors
- Impedances in series add
- Admittances in parallel add

$$
\begin{aligned}
& \hat{v}=\hat{V}_{1}+\hat{V}_{2}=z_{c_{1}} \hat{I}+z_{c_{2}} \hat{I} \\
& z_{\text {eff }}=z_{T H} \equiv \frac{\hat{V}}{\hat{I}}=z_{c_{1}}+z_{c_{2}} \\
& \hat{I}=\hat{I}_{1}+\hat{I}_{2}=\frac{\hat{V}}{z_{c_{1}}}+\frac{\hat{V}}{z_{c_{2}}} \\
& \Rightarrow \frac{1}{z_{e_{\text {er }}}}=\frac{\hat{I}}{\hat{v}}=\frac{1}{z_{c_{1}}}+\frac{1}{z_{c_{2}}}
\end{aligned}
$$

Voltage and Current Division with Impedances

- Impedances follow the same voltage and current division rules as resistors

$$
\hat{V}_{x}=\frac{\left(z_{c}+R_{2}\right) \|\left(R_{3}+z_{L}\right)}{R_{1}+\left(z_{c}+R_{2}\right) \|\left(R_{3}+z_{L}\right)} \cdot \hat{Z}_{\text {eff }}
$$

$$
v_{x}(t)=\operatorname{Re}\left\{\hat{V}_{x} e^{j \omega t}\right\}
$$

$Z_{T H} \longleftarrow$ Therenin Impedance
Can also create Thevenin and Norton Equivalents in frequency domain

Impedance - Dependence on Frequency

Sinusoidal Steady State Analysis using Impedances

1. Create impedance (frequency domain) model of the circuit

- Replace sinusoidal sources by the equivalent phasor

$$
v_{\mathrm{IN}}(t)=\mathrm{V}_{\mathrm{I}} \cos \left(\omega t+\phi_{\mathrm{I}}\right) \rightarrow \mathrm{V}_{\mathrm{I}} e^{j \phi_{\mathrm{I}}}
$$

- Replace circuit elements by their impedances models

$$
\mathrm{R} \rightarrow \mathrm{R} \quad \mathrm{~L} \rightarrow j \omega \mathrm{~L} \quad \mathrm{C} \rightarrow \frac{1}{j \omega \mathrm{C}}
$$

2. Solve frequency domain circuit (with algebraic constitutive relationships) for phasors of interest
Solve it like a resistive circuit
3. Convert phasors of interest into time domain by multiplying by $e^{j \omega t}$ and taking the real part

$$
v_{\mathrm{C}}(t)=\operatorname{Re}\left\{\widehat{\mathrm{V}}_{\mathrm{C}} e^{j \omega t}\right\}=\operatorname{Re}\left\{\mathrm{V}_{\mathrm{C}} e^{j \phi_{\mathrm{C}}} e^{j \omega t}\right\}=\mathrm{V}_{\mathrm{C}} \cos \left(\omega t+\phi_{\mathrm{C}}\right)
$$

Circuit Analysis using Impedances - Example 1

$$
\begin{aligned}
& v_{\text {IN }}(t)=V_{\mathrm{I}} \cos \left(\omega t+\phi_{\mathrm{I}}\right) u(t) \quad \hat{V}_{C}=\frac{\frac{1}{j \omega c}}{\frac{1}{j \omega C}+R} \cdot V_{I} e^{j \phi_{I}} \\
& \Rightarrow \hat{V}_{c}=\frac{V_{I} e^{j \phi_{I}}}{1+j R C \omega}=\frac{V_{I} e^{j \phi_{I}}{ }^{j \omega c}+R}{\sqrt{1+(R C \omega)^{2} e^{j \tan ^{-1}(R C \omega)}}}=\frac{V_{I} e^{j\left(\phi_{I}-\tan ^{-1}(R C \omega)\right)}}{\sqrt{1+(R C \omega)^{2}}} \\
& V_{c}(t)=\operatorname{Re}\left\{\hat{V}_{c} e^{j \omega t}\right\}=\frac{V_{I}}{\sqrt{1+\left(R(\omega)^{2}\right.}} \cos \left(\omega t+\phi_{I}-\tan ^{-1}(R(\omega))\right.
\end{aligned}
$$

