ECE/ENGRD 2100

Introduction to Circuits for ECE

Lecture 21

Undamped and Damped Second Order Circuits Natural and Driven Response

- Recommended Reading:
 - Textbook Chapter 8
- Upcoming due dates:
 - Lab report 3 due by 11:59 pm on Friday March 15, 2019
 - Prelab 4 due by 12:20 pm on Tuesday March 19, 2019
 - Homework 4 due by 11:59 pm on Friday March 22, 2019
 - Lab report 4 due by 11:59 pm on Friday March 29, 2019
- Prelim 2 on Thursday March 28, 2019 from 7:30 9 pm in 203 Phillips
 - Email afridi@cornell.edu if have conflict
 - Will cover material through Lecture 24
 - Prelim is closed-book and closed-notes
 - Two double-sided page formula sheet is allowed
 - Bring a calculator

Undriven LC Circuit – Intutive Approach

- $\downarrow i_{\rm L}(t)$ Since there is no energy dissipating element in the circuit, $v_{\rm C}(t)$ and $i_{\rm L}(t)$ will oscillate without damping
 - For total energy to remain constant, $v_{\rm C}(t)$ and $i_{\rm L}(t)$ oscillations must remain 90° out of phase
- ELI the ICE man: Voltage of inductor leads its current, $v_{\rm L}$ (= $v_{\rm C}$) leads $i_{\rm L}$, i.e., if v_c oscillation is cos then $i_{\rm L}$ oscillation is sin (as cos leads sin by 90°)
- To determine dc value $v_{\rm C}(t)$ and $i_{\rm L}(t)$ will oscillate around: $V_{\rm C}$, $I_{\rm L}$, assume circuit has a little damping, then ask what values of $v_{\rm C}(t)$ and $i_{\rm L}(t)$ would the circuit settle down to $-v_{\rm C}(t)$ and $i_{\rm L}(t)$ will oscillate around these values.
- Frequency of oscillation, $\omega_0 = 1/\sqrt{LC}$
- Relationship between amplitudes of oscillations of $v_{\rm C}$ and $i_{\rm L}$ is given by $\Delta V_{\rm C} = Z_0 \Delta I_{\rm L}$ where $Z_0 = \sqrt{{\rm L}/{\rm C}}$

$$v_{\rm C}(t) = \underline{B}\cos(\omega_0 t + \underline{\phi})$$
$$i_{\rm L}(t) = \frac{B}{Z_0}\sin(\omega_0 t + \phi)$$

Driven LC Circuit – Impulse Input

Driven LC Circuit – Impulse Input (Cont.)

Driven LC Circuit – Impulse Input – Waveforms

Driven LC Circuit – Step Input

Driven LC Circuit – Step Input (Cont.)

Driven LC Circuit – Step Input – Waveforms

Damped LC (RLC) Circuit – Natural Response

Series RLC Circuit – Differential Equation

$$+ \frac{1}{v_{C}(t)} + \frac{1}{c} \begin{bmatrix} 1 \\ R \\ - \end{bmatrix} + \frac{1}{c} \begin{bmatrix} 1 \\ c \\ - \end{bmatrix} + \frac{1}{c} \begin{bmatrix}$$

Parallel RLC Circuit – Differential Equation

RLC Circuit: Characteristic Equation - General Form

Characteristic Equation – Possible Solution – Case 1

Characteristic Equation – Possible Solution – Case 2

Characteristic Equation – Possible Solution – Case 3

