ECE/ENGRD 2100

Introduction to Circuits for ECE

Lecture 20

Undamped Second Order LC Circuits
Natural Response

Announcements

- Recommended Reading:
- Textbook Chapter 8
- Upcoming due dates:
- Homework 3 due by 11:59 pm on Monday March 11, 2019
- Lab report 3 due by 11:59 pm on Friday March 15, 2019
- Prelim 2 on Thursday March 28, 2019 from 7:30-9 pm in 203 Phillips
- Email afridi@cornell.edu if have conflict
- Will cover material through Lecture 24
- Prelim is closed-book and closed-notes
- Two double-sided page formula sheet is allowed
- Bring a calculator

Undriven LC Circuit - Differential Equation Approach

$$
\begin{aligned}
\substack{i_{C}(t) \downarrow \\
v_{C}(t)} \\
c_{-}
\end{aligned}
$$

Undriven LC Circuit - Alternate Differential Equation

Differential equation in terms of i_{L}

LC Circuit - Natural Response

$$
\begin{aligned}
& \Rightarrow s^{2}=-\frac{1}{L C} \quad \Rightarrow \quad s=\frac{ \pm \sqrt{-1}}{\sqrt{L C}} \\
& j \equiv \sqrt{-1} \Rightarrow s=\frac{ \pm j}{\sqrt{L C}} \Rightarrow s=+j \omega_{0} \quad \text { or } s=-j \omega_{0} \\
& \text { Define } \frac{1}{\sqrt{L C}} \equiv \omega_{0} \\
& v_{c, h}(t)=A_{1} e^{+j \omega_{0} t}+A_{2} e^{-j \omega_{0} t}
\end{aligned}
$$

LC Circuit - Natural Response - Capacitor Voltage

$$
\begin{aligned}
& v_{c}(t)=A_{1} \cos \left(\omega_{0} t\right)+j A_{1} \sin \left(\omega_{0} t\right)+A_{2} \operatorname{Cos}\left(-\omega_{0} t\right) \\
& v_{c}(t)=\underbrace{\left(A_{1}+A_{2}\right)}_{A_{2} \operatorname{Cos}\left(\omega_{0} t\right)} \cos \left(\omega_{0} t\right)+\underbrace{j\left(A_{1}-A_{2}\right)}_{\text {III }} \sin \left(\omega_{0} t\right) \quad \underbrace{j \operatorname{Sin}\left(-\omega_{0} t\right)}_{B_{2}}-j A_{2} \sin \left(\omega_{0} t\right) \\
& B_{1} \notin B_{2} \text { will be veal } \\
& v_{c}(t)=B_{1} \cos \left(\omega_{0} t\right)+B_{2} \sin \left(\omega_{0} t\right)=B \operatorname{Cos}\left(\omega_{0} t+\phi\right)
\end{aligned}
$$

Undamped Natural Radid Freq,

LC Circuit - Natural Response - Inductor Current

Initial Conditions

$$
\begin{aligned}
& V_{C}(0)=V_{0} \& i_{L}(0)=I_{0} \\
& C \omega_{0}=C \frac{1}{\sqrt{L C}}=\sqrt{\frac{C}{L}}=\frac{1}{z_{0}}
\end{aligned}
$$

$$
\begin{gathered}
v_{C}(t)=B_{1} \cos \left(\omega_{0} t\right)+B_{2} \sin \left(\omega_{0} t\right)=B \cos \left(\omega_{0} t+\phi\right) \\
i_{L}(t)=-i_{C}=-C \frac{d v_{c}}{d t} \\
i_{L}(t)=+C B \omega_{0} \sin \left(\omega_{0} t+\phi\right)
\end{gathered}
$$

Define $z_{0} \equiv \sqrt{\frac{L}{C}}$
Characteristic Impedance, Z_{0}

LC Circuit - Natural Response Summary

$\cos _{i_{\mathrm{C}}}=\mathrm{C} \frac{d v_{\mathrm{C}}}{d t}{ }^{\text {sin }}$
 \dagger
Inductor

Undriven LC Circuit - Intutive Approach

- To determine dc value $v_{\mathrm{C}}(t)$ and $i_{\mathrm{L}}(t)$ will oscillate around: $\mathrm{V}_{\mathrm{C}}, \mathrm{I}_{\mathrm{L}}$, assume circuit has a little damping, then ask what values of $v_{\mathrm{C}}(t)$ and $i_{\mathrm{L}}(t)$ would the circuit settle down to $-v_{\mathrm{C}}(t)$ and $i_{\mathrm{L}}(t)$ will oscillate around these values.
- Frequency of oscillation, $\omega_{0}=1 / \sqrt{\text { LC }}$

$$
v_{c}(t)=B \cos \left(\omega_{0} t+\phi\right)+0^{\prime \prime}
$$

- Relationship between amplitudes of oscillations of v_{C} and i_{L} is given by $\Delta \mathrm{V}_{\mathrm{C}}=Z_{0} \Delta \mathrm{I}_{\mathrm{L}}$ where $Z_{0}=\sqrt{\mathrm{L} / \mathrm{C}}$

$$
i_{L}(t)=\frac{B}{z_{0}} \sin \left(\omega_{0} t+\phi\right)+0
$$

Relationship Between Amplitudes of Oscillations

Peak Energy in Inductor $=\frac{1}{2} L \Delta I_{L}^{2}$
Energy Conservation: $\frac{y}{2} C \Delta V_{c}^{2}=\frac{1}{2} L \Delta I_{L}^{2}$

$$
\Rightarrow \frac{\Delta V_{C}}{\Delta I_{L}}=\sqrt{\frac{L}{C}}=z_{0}
$$

$$
\Delta \mathrm{V}_{\mathrm{C}}=\mathrm{Z}_{0} \Delta \mathrm{I}_{\mathrm{L}}
$$

Undriven LC Circuit - Applying Initial Conditions

$$
\begin{aligned}
& \begin{array}{c}
+ \\
v_{\mathrm{C}}(t) \\
- \\
- \\
\mathrm{C} \quad \mathrm{~L}
\end{array} \\
& v_{\mathrm{C}}(t)=B \cos \left(\omega_{0} t+\phi\right) \quad \Rightarrow \quad v_{C}\left(0^{+}\right)=B \cos \phi \\
& i_{\mathrm{L}}(t)=\frac{B}{\mathrm{Z}_{0}} \sin \left(\omega_{0} t+\phi\right) \Rightarrow i_{\mathrm{L}}\left(0^{+}\right)=\frac{B}{Z_{0}} \sin \phi \\
& v_{\mathrm{C}}\left(0^{+}\right)=\mathrm{V}_{0} \quad i_{\mathrm{L}}\left(0^{+}\right)=\mathrm{I}_{0} \quad \Rightarrow \\
& B \cos \phi=V_{0} \\
& \frac{B}{Z_{0}} \sin \phi=I_{0} \\
& \Rightarrow \frac{\frac{B}{Z_{0}} \sin \phi}{B \cos \phi}=\frac{I_{0}}{V_{0}} \Rightarrow \tan \phi=\frac{I_{0} Z_{0}}{V_{0}} \Rightarrow \phi=\tan ^{-1}\left(\frac{I_{0} z_{0}}{V_{0}}\right) \\
& \frac{V_{0}^{2} \times\left(I_{0}^{z_{0}}\right.}{V_{0}} I_{0} z_{0} \Rightarrow \cos \phi=\frac{V_{0}}{\sqrt{V_{0}^{2}+\left(I_{0} z_{0}\right)^{2}}} \\
& \begin{array}{l}
I_{0} z_{0} \Rightarrow \cos \phi=\frac{V_{0}}{\sqrt{V_{0}^{2}+\left(I_{0} z_{0}\right)^{2}}} \\
\therefore B=\frac{V_{0}}{\cos \phi}=\chi_{0} \cdot \frac{\sqrt{V_{0}^{2}+\left(I_{0} z_{0}\right)^{2}}}{\nabla_{0}} \Rightarrow B=\sqrt{V_{0}^{2}+\left(I_{0} z_{0}\right)^{2}} \\
\text { ECE/ENGRD 2100 }
\end{array}
\end{aligned}
$$

