ECE/ENGRD 2100

Introduction to Circuits for ECE

Lecture 16

Capacitors and Inductors

Announcements

- Recommended Reading:
 - Textbook Chapter 6
- Upcoming due dates:
 - Prelab 3 due by 12:20 pm on Tuesday March 5, 2019
 - Homework 3 due by 11:59 pm on Friday March 8, 2019
 - Lab report 3 due by 11:59 pm on Friday March 15, 2019
- Lab 3 is next week (starting Tuesday March 5, 2019)

Capacitance of Parallel-Plate Capacitor

$$C \equiv \frac{dge}{dve} = \frac{eA}{e}$$

Energy Stored in a Capacitor

Inductors

Inductance of Toroidal Inductor

Energy Stored in an Inductor

Energy:
$$w_{L}(t_{1}) = \int_{-\infty}^{t_{1}} p_{L} dt$$
 $w_{L}(t_{1}) = \int_{-\infty}^{t_{1}} i_{L} v_{L} dt$
 $v_{L} = L \frac{d \dot{v}_{L}}{d t}$
 $I_{1} = \dot{v}_{L}(t_{1})$
 $w_{L} = \frac{1}{2} L I_{1}^{2}$

Example Capacitor Circuit

Example Inductor Circuit

Series and Parallel Combinations of Capacitors

Series and Parallel Combinations of Inductors

Parallel

Series

$$L_{eg} = L_1 + L_2 + \cdots + L_N$$

State Property of Capacitors and Inductors

- Capacitors and inductors exhibit memory
 - Future capacitor voltage depends on past capacitor voltage
 - Future inductor current depends on past inductor current
- Circuits that contain capacitors and/or inductors exhibit dynamic behavior
 - Solving such circuits requires solving differential equations

State Variables

Capacitor

Capacitor voltage is a state variable – it has memory (remembers its previous state)

State Variables

Ve(t)

Inductor

Inductor current is a state variable – it has memory (remembers its previous state)

Capacitors and Inductors Summary

Capacitor $C \equiv \frac{dq_{C}}{dv_{C}}$ $i_{C} \downarrow + v_{C} \qquad i_{C} = C \frac{dv_{C}}{dt}$ $v_{C}(t_{1}) = v_{C}(t_{0}) + \frac{1}{C} \int_{t_{0}}^{t_{1}} i_{C}(t) dt$

 $v_{\rm C}(t_1^+) = v_{\rm C}(t_1^-)$ if $i_{\rm C}(t_1) < \infty$

Energy Stored

$$w_{\rm C} = \frac{1}{2} C v_{\rm C}^2$$

 $i_{\rm L}(t_1) = i_{\rm L}(t_0) + \frac{1}{{\rm L}} \int^{t_1} v_{\rm L}(t) dt$ $i_{\rm L}(t_1^+) = i_{\rm L}(t_1^-)$ if $v_{\rm L}(t_1) < \infty$

Energy Stored

$$w_{\rm L} = \frac{1}{2} {\rm L} i_{\rm L}^2$$

ECE/ENGRD 2100 16