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ECE4740: 
Digital VLSI Design

Lecture 28: Memories

1024

Semiconductor memories
Contribute significantly to area and power of VLSI circuits

1025
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Memory hierarchy in a processor

• Exploit locality: 
– large amount of cheap memory 
– sufficient amount of fast, expensive memory
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Memories in an ASIC

• Critical data stored in flip-flops within datapath

• Small memories, typically build from standard-cell 
based static cells (latches or flip-flops)

• Larger amounts of data stored in SRAM macrocells

• Off-chip DRAMs store GBs of data 1027
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Semiconductor memories

• 50% (growing) of silicon area is memory in most designs
• Often limits throughput or energy efficiency
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RWM NVRWM ROM

Random Access Non-Random 
Access

EPROM Mask-
programmed

SRAM (cache, 
register file)

FIFO/LIFO E2PROM

DRAM Shift register

CAM

FLASH Electrically-
programmed 

(PROM)

read/write 
memories non-volatile

Also this: write-only memories

1029
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DRAM chip capacity growth
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Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Bandwidth growth in DRAMs

1031
http://www.samsung.com/global/business/semiconductor/file/media/DDR4_Brochure-0.pdf
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Memory architecture overview
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Memory architecture details
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Split large memories in blocks/banks

• Shorter word and bit lines  faster

• BlockAddr signal activates only 1 block 
power reduction

1034

input/output (m bits)

Read-only memories (ROMs)
Useful for large look-up tables (LUTs)

1035
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Read-only memory cells
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Image Adapted From: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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4x4 MOS NOR ROM cell array

1038
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MOS NOR ROM layout
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4x4 MOS NAND ROM
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(Model for NOR ROM)

• Word-line parasitics

– Wire capacitance and 
gate capacitance

– Wire resistance 
(polysilicon)
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V DD

C bit

rword
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WL
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• Bit-line parasitics

– Resistance not dominant (metal)

– Drain and gate-drain capacitance

NOR model

Precharged MOS NOR ROM
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Image adapted from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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(Model for NAND ROM)

• Word-line parasitics

– Wire capacitance and 
gate capacitance

– Wire resistance 
(polysilicon)

1044

• Bit-line parasitics

– Resistance of cascaded transistors dominates

– Drain/source and complete gate capacitance

NAND model

V DD

C L

rword

cword

cbit

rbit

WL

BL

NAND ROM is 
smaller but also 
much slower!!!!

Remember: reducing word-line delay

• Use bypasses!

– Drive word line from both sides

– Use metal bypass (better materials)

1045
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Metal word line

WL

Driver
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Metal bypass

WL K cells

e.g., use 
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ROMs for look-up tables (LUTs)

• LUTs used in ASIC designs and some processors
– Store fixed program (hard-coded software)
– Fast division and square root units
– Approximating arbitrary arithmetic functions

• Just set input value to word address and output 
value is ROM content

• ROM-based approach only useful for large LUTs

1046

N-bit to 
M-bit LUT

input
value

output
value

Read-write memories (RAMs)
RWM is hard to pronounce

1047
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Read-write memories (RAMs)
• Static: SRAM

– Data is stored as long as supply is applied
– Large cells (6T)  fewer bits per area
– Fast (used where speed is important)
– Differential outputs (BL and !BL)
– Use sense amps for better performance
– Compatible with CMOS technology

• Dynamic: DRAM
– Requires periodic refresh
– Small cells (1T to 3T)  more bits per area
– Slower (used for large main memories)
– Single-ended output (BL only)
– Need sense amps for correct operation
– Not typically compatible with regular CMOS technology1048

Memory timing
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SRAMs are used everywhere!

• Turbo-decoder 
ASIC for LTE

• 65nm CMOS

• 129kb SRAM 

• Single-port only

• Runs at 300MHz

1050S, Benkeser, Belfanti, & Huang, 2011

4x4 static RAM (SRAM)

1051

A0

!BL
WL[0]

A1

A2

column decoder

sense amplifiers

write circuitry

BL

WL[1]

WL[2]

WL[3]

bit line precharge
2 bit words

clocking and 

control

enable

BL[i] BL[I+1]

read 

precharge



6/8/2018

15

2D memory configuration

1052

sense ampssense amps

halves the length of 
the word and bit lines 
 increased speed

Example: large SRAM

• UltraSparc 512KB 
cache SRAM

• Split into 4 subarrays

– 4x 128KB subarrays

– Each subarray consists 
of 16 8KB banks

– Also includes control 
and cache circuitry

1053

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris



6/8/2018

16

6T SRAM cell

• Cross-coupled inverters  sizing critical
1054

!BL BL

WL

M1

M2
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M4

M5

M6Q

!Q

6T SRAM cell: read

• Read disturb (read upset):

– Bit-line capacitance Cbit can be in pF range

– Limit allowed voltage rise on !Q to not change 
SRAM cell state

1055
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(6T SRAM cell: read)

• Cell ratio: CR = (W1/L1)/(W5/L5)

• ∆V = maximum allowed voltage ripple
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Q=1
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CbitCbit

M5 = saturation
M1 = linear

!BL=1 BL=1

(6T SRAM cell: read)

• Common cell ratios are 1.25 to 2
1057
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6T SRAM cell: write

• Q=1 stored in cell, trying to write a 0

• M6 must be more conductive than M4 to 
pull node Q low enough for M1 & M2
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!BL=1 BL=0

WL=1

M1

M4

M5
M6

Q=1
!Q=0

M2

change 
value

(6T SRAM cell: write)

• Pullup ratio: PR= (W4/L4)/(W6/L6)
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(6T SRAM cell: write)

• Node Q must be pulled below VTn
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Cell sizing

• Keep cell size minimized  max. density

• Min-sized pull-down FETs (M1 and M3)

– Requires min-width and longer-than-min-length 
PTs (M5 and M6) to ensure proper CR

– Sizing of PTs increases load on bit lines

• Min-sized PTs can be used

– Increase width of pull-downs (M1 and M3)

– Reduces load on word lines but increases size

1061
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Cell layout of 6T SRAM
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Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

Memories with multiple ports

• So far: single-port memories: 
– either read or write

• Dual (or two) port memories: 
– read and write, 2x read, or 2x write

1063
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Reducing bit-line delay

• Reduce voltage swing

– Needs sense amplifier to restore signal

• Isolate memory cells from bit lines after 

sensing  pulsed word line

• Isolate sense amplifiers from bit lines after 

sensing  bit line isolation

1064

Bit line isolation
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coupled latch
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sense amplifier outputs

V = 0.1Vdd

V = Vdd

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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Dynamic RAM (DRAM)
Higher density than static RW memories (SRAMs)

1066

DRAM properties

• Requires periodic refresh

• Small cells (1T to 3T)  more bits/area

• Slower (used for large main memories)

• Single-ended output (bit-line only)

• Need sense amps for correct operation

• Typically not compatible with regular 
CMOS technology 

1067
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4x4 dynamic RAM (DRAM)
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3T DRAM cell

• No constraint on device ratios

• Reads are non-destructive

• Value stored at node X: “1”=VWWL-VTn
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Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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Layout of 3T DRAM cell
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• About 2x smaller than SRAM cell

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

1T DRAM cell
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Vdd/2 sensing

• Write: CS is charged (or discharged) by 
asserting WL and asserting (or lowering) BL

• Read: Charge distribution between CBL and CS

• Read is destructive  refresh after read

requires sense amp for proper functionality

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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Sense amplifier operation

• Sense amplifier needed for functionality

1072

DV (1)

V (1)

V (0)

t

V
PRE

V BL

sense amp activated

word line activated

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

1T DRAM cell properties

• Output is single-ended (requires special sense amps)
• Requires extra capacitor to store state
• Not compatible with conventional CMOS processes
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Peripheral memory circuits
Decoders, sense amps, etc.

1074

Row decoders (remember Lab 2)

• M to 2M decoder consists of 2M logic gates

• Two main options:

– NAND decoder

– NOR decoder 

1075

…

…
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Hierarchical row decoding

• Multi-stage decoding improves performance
1076

• • •

• • •

A 2A 2

A 2A 3

WL 0

A 2A 3A 2A 3A 2A 3

A 3 A 3A 0A 0

A 0A 1A 0A 1A 0A 1A 0A 1

A 1 A 1

WL 1

NAND decoder using

2-input pre-decoders

align decoder 
output with rows 

of memory!

Dynamic NOR row decoder

• Signal goes through at most one FET

• Almost constant propagation delay

1077
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GND
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• Precharge all 
outputs high

• Then, GND 
inactive outputs

• Active “high” 
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Dynamic NAND row decoder

• All inputs must be low during precharge (prevent VDD 
and GND short)

• Slower than NOR implementation (3 FETs in series)

1078

• Precharge all 
outputs high

• Then, discharge 
active output

• Active “low” 
signals

WL 3

A 0A 0 A 1A 1

WL 2
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0

V DD

V DD

V DD

V DD

Precharge devices

PT-based column decoder 

• Advantage: speed (only 1 extra T in path)

• Disadvantage: large transistor count
1079
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Tree-based column decoder 

• Advantage: number of T reduced significantly
• Disadvantage: delay increases quadratically with stages

– prohibitive for large decoders
– Add buffers, progressive sizing, combination of tree and PTs

1080

• One transistor 
per bit line

• 2*(2k-1) 
transistors in 
total

• k=10  2046T 

BL 0 BL 1 BL 2 BL 3

D

A 0
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A 1
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Bit-line precharging: SRAM

1081

• Static: no precharge clock required, but consumes 
static power (fight against bit-line discharge)

• Clocked: can use large precharge devices and bit 
line equalization much faster, but large clock load

static pull-up precharge

BL !BL

clock

clocked precharge

!BLBL

VDDVDD VDD VDD

equalization 
transistor: 

equalizes levels 
on BL and !BL 
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Sense amplifiers

• Amplifies small swing on bit lines to full rail-
to-rail swing needed at memory output

1082
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input output
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Differential sense amplifier

• Directly applicable to SRAMs
1083
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Differential sensing (cont’d)

1084
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Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Latch-based sense amp

• EQ used to initialize latch 
in its meta-stable point

• Once adequate voltage 

established SE=1 enables 

sense amplifier

• Positive feedback quickly 
forces output to stable 
operating point

1085
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Read/write circuitry

1086

D: data (write) bus

R: read bus

W: write signal

CS: column select

(column decoder)

Local W (write):

BL = D,  !BL = !D

enabled by W & CS

Local R (read):

R = BL,  !R = !BL

enabled by !W & CS

!BL BL
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Reliability and yield
Trade-off noise for density and performance

1087
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Reliability and yield

• Semiconductor memories trade-off noise 
margin for bit density and performance

– Sensitive to noise (crosstalk, supply noise, etc.)

• High-density and large die size causes yield 
problems:

• Increase yield using error correction and 
redundancy

1088

A = chip area D = defect density

Yield vs. chip area and process

• Yield curves at different stages of process 
maturity [Veendricks92]

1089
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Soft errors

• Ionizing radiation can cause non-recurrent 
and nonpermanent errors in memories

1090
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Redundancy in memory structure

• Replace bad row or column with “spare”  set by fuse bank

• Solves problem at manufacturing time, but not soft errors
1091
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Redundancy and error correction

• Suitable for preventing soft errors

1092
Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Example: (7,4,3) Hamming code

• Consider 4-bit number [B3,B5,B6,B7]

• Add 3 parity check bits [P1,P2,P4]

• Chose parity bits as follows:

1093

• Error in bit B3 would cause 
1st and 2nd parity check to fail

• Implies that bit 3 is in error 
 can be corrected (flipped)

1

1

0

011 = 3


