ECE4740:
Digital VLSI Design

Lecture 27: (A)synchronous circuits

Dos and don'ts (or do's and don'ts, or do's and don't’s)

Safe (a)synchronous circuits

6/8/2018

6/8/2018

Careful with sequential logic

* Digital VLSI designs often fail because of
timing issues and not wrong functionality

* Correct and deterministic operation can only
be guaranteed if all signals settled before
stored in flip-flop, latch, RAM, etc.

* There are essentially three ways
— Synchronous clocking

— Asynchronous clocking
— (Self-timed clocking)

Synchronous clocking

» All storage operations and state transitions
occur periodically at precise moments in
time determined by a single clock

e Clock domain: Subcircuit where all clock
signals maintain fixed frequency and phase
relationships

* Clock boundary: the separation between
two distinct so-called clock domains

Synchronous clocking (cont'd)

data
path

clock g
L

reset

« Data path and clock/reset strictly separated
* Clock and reset nets may contain buffers

Asynchronous clocking

* Some or all of the storage elements are
permitted to change their states
independently from a global reference

* Such circuits may contain
— Zero-latency feedback loops, ring oscillators
— Asynchronous state machines (ASMs)
— Logic gates on clock and reset nets
— Unclocked bistables (e.g., SR latch)
— Etc.

6/8/2018

Asynchronous clocking (cont'd)

data s

path don't
do this

clock
mess

reset
mess

Data path and clock/reset not separated
Logic on clock/reset nets

Multiple clock sources

Zero latency feedback loops

(Self-timed circuits)

WW@%

Rl

ack ack

ASM

* Request and acknowledge signals control
dataflow among blocks

i 7 ‘
ACK !L%!SAGK
oy alicd)

e Each block runs as fast as it can s
_ACKACKACKACK!

6/8/2018

Why is careful clocking important

* Glitches/hazards are unwanted transients
— Glitch is what you see, hazard is the cause

— Causes: Reconvergent fan-outs, multiple inputs
that change at different time instants, etc.

e Critical rule: clocks, asynchronous
reset, write lines of RAMs etc.
must always be glitch free

Potential failures if rule violated

* Unwanted transitions in state machines

* Unwanted reset to initial state

* Erroneous triggering of interrupts in processor
* Storage of bogus data in flip-flop or RAM

* Data loss or duplicates during data transfer

* Deadlocks in asynchronous communication

* Metastable behavior or marginal triggering

* And many more...

6/8/2018

Rules for safe synchronous
designs

* Strictly separate reset, clock, and information
signals (data, control, test, etc.)

* Allow all signals to settle before storage

* No unclocked bistables (e.g., SR latch)

* No zero-latency feedback loops

* No logic on clock/reset signals*

* Distribute clock & async. reset by fanout tree

» Never use reset for functionality (gated reset)

*terms and conditions may apply

Pros of synchronous clocking

* Glitches do not compromise functionality
* No chance for inconsistent data
* Immunity to noise and interference

* All timing constraints are one-sided; enables to slow
down or deactivate computation

e Deterministic behavior

* Enables separation of functional verification from
timing analysis

* Automated tool support

» Simplified functional circuit testing and verification

6/8/2018

But how about enable signals and clock gating?

Never have logic on clock signal!ll

Rule: Never use logic on clock signal

only if you know

* Very few exceptions: what you are doing!

ac || I
D Q ENA j
—ENA P J ‘
CLK
FAN Q N

> time

6/8/2018

Problems with this approach

* Glitches on ENA (will) cause failures
* Timing Issues

ax |] |

D Q ENA A
CLK_ena / ’—\

A >

CLK_ena
Q X undefined
CLK ? ENA / I > time
- /

Q undefined state :

switches at wrong
never time: timing issues
do this

Safe flip-flop with ENA

* Compliant with rules for
synchronous design

* No logic on clock signal

* Not efficient from energy B
perspective: clock still active
— Solution: safe clock gating

6/8/2018

Clock gating

* |dea: Switch off clock to disable flip-flop(s)

 Significantly reduces dynamic power
consumption of entire subcircuits

b a « AND gate on clock path
disables activity of flip-flop

D\

ﬁcm_ena * Glitches cause failures
never CLK

ENA
do this

Clock gating (cont'd)

CLK __J |
ENA -]]

> time

* Ensure that glitches and early ENA release
signals do not contaminate CKG signals!

* Modern standard-cell libraries often include
robust clock-gate cells

6/8/2018

6/8/2018

Safe clock gate implementation

* Single-edge triggered clock gate:

ENA
CLK CKG H B CKG
ENA CLK j

h g 4/\J L clean
— — H

> time

Every sequential circuit needs this!

Reset

10

6/8/2018

The reset signal

* Required to force circuit into
predefined state (initialization)

e Determines when to enter
a given state

* Usually applied at beginning of
time/operation

* Rarely applied during operation
- common exception: watchdog

996

Synchronous reset

reset on
/ clock edge

CLK J ‘
b a RST |
N
CLK : : :
2 Q | | |
/ ’ > time

active-low reset

* Resets whenever IRST=0 and at clock edge
* Applied as any other input to flip-flop

11

Why is reset usually active low?

* During power-up, keeping 'RST=0 is more
safe as voltage high level where gates are
operating correctly is not clearly defined

— Low level (GND) is always clearly defined
* It is easier for external sources (e.g.,
switches) to safely provide active low signal
— Active high requires Vpp available at at switch
 Also a historical reason from T TL circuits:

— Could easily produce GND but not VDD
— Can sink more current than source

Synchronous reset (cont'd)

FAN N\
' CLK ‘ CLK

* IRST signal behaves as regular input signal
* Versions that set FF to 1 also exist

6/8/2018

12

Synchronous reset (cont'd)

* Synchronous reset advantages
— Circuit completely synchronous
— (Sometimes smaller flip-flops)
» Synchronous reset disadvantages

— Reset tree required to ensure all resets occur in
same clock cycle

— May require pulse stretch to ensure that all flip-
flops see IRST signal at rising clock edge

— Requires a clock to be present

Asynchronous reset

CLK “J L“‘J | 1 |
D Q W
I

> time

* Resets state whenever IRST is low
* Clock edges do not matter

6/8/2018

13

Asynchronous reset (cont'd)

rising-edge-triggeredfipfiop] B e e e e S .

CLK & D(%7 : I>| » : DL TEE . >’_'? 9
,‘3?',‘ ,,,,,, f,‘ g@,i ,,,,,,,,,, MRS el VL) Z uff,'

[IRST | A | (RST*A)
* NAND gate either sets output B I
. . 0 1 1
to 1 (if IRST low) orinverts A |
1 1 0

From H. Kaeslin, “Digital Integrated Circuit Design,” 1002

Cambridge Univ. Press, 2008

Asynchronous reset (cont'd)

* Asynchronous reset advantages
— Reset has priority over any other signal
— Reset happens without clock present
— Data paths are always clear of reset signals
— Synthesis tools understand what is going on
» Asynchronous reset disadvantages

— Reset de-assertion (=release) must occur within
the same clock cycle for all flip-flops

— Reset line is sensitive to glitches at any time

6/8/2018

14

Fully asynchronous reset

reset tree

D Q-

L~
CLK ™S

RST
CLK
A

skew

\/
clock tree

A

try to
avoid this

 One must be careful that reset de-assertion
('IRST from 0 to 1) happens in same cycle

* This approach should be avoided

Fully synchronized async. reset

reset tree
RST |_| N

L~
ok — > %J

O

skew

clock tree

* Reset and de-assertion happens in
synchronous way (w.r.t. the clock signal)

» Can use tools to generate reset tree

6/8/2018

15

6/8/2018

Async. reset, synch. de-assertion

reset synchronizer

clock tree

* Reset is applied in fully asynchronous way
e De-assertion in synchronous way
» Can use tools to generate reset tree

Include reset in ALL flip-flops™

* A simple example
¢ Reset CyC|e overflow D QJ
signal
—o RST
CLK
A
1 0 X 0
—=o| RST —o RST
l CLK l

*unless you are a pro; but even then, think thrice (and also think about this slide)

16

6/8/2018

Include reset in ALL flip-flops™

* A simple example
* Cycle 1 A

overflow D Q
signal
—=o RST
CLK
A

LR Lo W e W R
g LT o

— ol RST —=o RST
CLK CLK

VAN D\

1 | }

*unless you are a pro; but even then, think thrice (and also think about this slide)

Include reset in ALL flip-flops™

* A simple example /
* Cycles 2,3,...... A

overflow D Q
signal
—o RST
CLK
A

—o RST —of RST
CLK never CLK
D\ X D\
CLK do this l
‘ - JEAY

CIRCUIT

*unless you are a pro; but even then, think thrice (and also think about this slide)

17

[]

Things to remember

Glitches must be avoided on reset signal
No logic on reset signal allowed

Never use reset to implement functionality
Careful with timing on reset signal
Distribute reset signal by fanout tree

All flip-flops should have a reset input
— Simplifies design for test
— Avoids unknown states that remain forever

Acquisition of asynchronous data

Synchronization

6/8/2018

18

Signals between two clock
domains

clock boundary

external
input 1|
signal

CLK

» External input signal is not synchronized to the
CLK signal within the RHS circuit

* Can also be signal from another clock domain!

1012

Signal may not be sampled correctly

metastability

* Signal may violate setup/hold timing
* Signal may remain metastable for long time

1013

6/8/2018

19

Remember metastability?

metastable
/ point
C

Via=Vo,

Vil {>CV01 ViZ DC VoZ

Vig= Vo,
* Once FF goes metastable, can stay
infinitely long at metastable point

« Common model: Probability of staying
at C decreases exponentially over time

Model for metastability

* Probability that metastability remains
longer than time #’can be approximated as

T, —¢f
P(tpg > t') = ?Oexp()
C TS

— thq, time from input to output

— T,/ T, describes probability that input changes
during setup/hold time (aperture)

— 1. and T, can be obtained from simulations

6/8/2018

20

The “solution”: Synchronizer FF

clock boundary

synchronization
flip-flop

.

L# CLK

» Synchronization flip-flop reduces likelihood
of metastability but does not solve the

problem .

Probability of synchronizer failure

T o Tc _ tse u
P(failure) = N=2 exp((! p>>
T Ts

C

* Models probability of failure per second
— N average number of asynchronous input
changes per second
— T, = clock period
-T

setup = SEtuUp time

6/8/2018

21

Mean-time between failure

(MTBF)
o 1 o Tc Tc - tsetup
MIBE= P(failure) NTy exp(Ts)

« MTBF Is a design parameter
* Set to 1e19 seconds (lifetime of universe)
« MTBF can be increased by

— Fewer switching events
— Longer period, smaller setup time

Example: single synchronizer

1 Tc Tc - tsetu
MTBF = _ b
P(failure) NTp eXp(T)

* Example parameters in 0.25um process:

-1, = 20 ps
— Ty =15 ps
—N =50 MHz

— T_ = 0.5ns (ignore setup time)
 What is the MTBF?

6/8/2018

22

6/8/2018

Solution: Multiple synchronizer
FFs

clock boundary

synchronization
flip-flops

external
input
signal

» Cascading multiple synchronization flip-flops
reduces probability of failure (increases
MTBF)

How about multiple parallel signals?

¢

some logic

S

external input signals

4 CLK

synchronization
flip-flops

* Problem: “fast bits” and “slow bits” may
be sampled in different periods

* Multiple sequential sync. FFs do not help!

23

Basic idea

“l have data”

combinational combinational
logic

“I am ready”

1022

Solution: Handshaking protocols

clock ! boundary

Lack
FSM W) FSM
1
i !
enal w bits ena
* CHE W
|
1
i
Tﬁl I CLK2 i%"

CLK1

* Two or four phase protocols possible

* Synchronizer FFs only on req and ack
signals o

6/8/2018

24

