
6/8/2018

1

ECE4740:
Digital VLSI Design

Lecture 27: (A)synchronous circuits

976

Safe (a)synchronous circuits

Dos and don’ts (or do’s and don’ts, or do’s and don’t’s)

977

6/8/2018

2

Careful with sequential logic

• Digital VLSI designs often fail because of

timing issues and not wrong functionality

• Correct and deterministic operation can only

be guaranteed if all signals settled before

stored in flip-flop, latch, RAM, etc.

• There are essentially three ways

– Synchronous clocking

– Asynchronous clocking

– (Self-timed clocking)
978

Synchronous clocking

• All storage operations and state transitions
occur periodically at precise moments in
time determined by a single clock

• Clock domain: Subcircuit where all clock
signals maintain fixed frequency and phase
relationships

• Clock boundary: the separation between
two distinct so-called clock domains

979

6/8/2018

3

Synchronous clocking (cont’d)

• Data path and clock/reset strictly separated

• Clock and reset nets may contain buffers

980

clock

reset

data

path

Asynchronous clocking

• Some or all of the storage elements are
permitted to change their states
independently from a global reference

• Such circuits may contain

– Zero-latency feedback loops, ring oscillators

– Asynchronous state machines (ASMs)

– Logic gates on clock and reset nets

– Unclocked bistables (e.g., SR latch)

– Etc.
981

6/8/2018

4

Asynchronous clocking (cont’d)

• Data path and clock/reset not separated

• Logic on clock/reset nets

• Multiple clock sources

• Zero latency feedback loops
982

clock

mess

reset

mess

data

path don’t
do this

(Self-timed circuits)

• Request and acknowledge signals control
dataflow among blocks

• Each block runs as fast as it can
983

ack

reset

data

path

ASMASM

ack

req req

ASM

6/8/2018

5

Why is careful clocking important

• Glitches/hazards are unwanted transients

– Glitch is what you see, hazard is the cause

– Causes: Reconvergent fan-outs, multiple inputs
that change at different time instants, etc.

• Critical rule: clocks, asynchronous
reset, write lines of RAMs etc.
must always be glitch free

984

Potential failures if rule violated

• Unwanted transitions in state machines

• Unwanted reset to initial state

• Erroneous triggering of interrupts in processor

• Storage of bogus data in flip-flop or RAM

• Data loss or duplicates during data transfer

• Deadlocks in asynchronous communication

• Metastable behavior or marginal triggering

• And many more…
985

6/8/2018

6

Rules for safe synchronous
designs

• Strictly separate reset, clock, and information

signals (data, control, test, etc.)

• Allow all signals to settle before storage

• No unclocked bistables (e.g., SR latch)

• No zero-latency feedback loops

• No logic on clock/reset signals*

• Distribute clock & async. reset by fanout tree

• Never use reset for functionality (gated reset)

986
*terms and conditions may apply

Pros of synchronous clocking

• Glitches do not compromise functionality

• No chance for inconsistent data

• Immunity to noise and interference

• All timing constraints are one-sided; enables to slow
down or deactivate computation

• Deterministic behavior

• Enables separation of functional verification from
timing analysis

• Automated tool support

• Simplified functional circuit testing and verification

987

6/8/2018

7

Never have logic on clock signal!!!

But how about enable signals and clock gating?

988

Rule: Never use logic on clock signal

• Very few exceptions:

989

ENA

CLK

D Q

CLK

ENA

D

Q

time

only if you know
what you are doing!

6/8/2018

8

Problems with this approach

990

D Q

CLK_ena

ENACLK

CLK

ENA

D

Q

time

CLK_ena

switches at wrong
time: timing issues

undefined

undefined state

• Glitches on ENA (will) cause failures

• Timing issues

never
do this

Safe flip-flop with ENA

991

• Compliant with rules for
synchronous design

• No logic on clock signal

• Not efficient from energy
perspective: clock still active

– Solution: safe clock gating

D Q

CLK

1
/x

1

0

D_in

ENA

6/8/2018

9

Clock gating

• Idea: Switch off clock to disable flip-flop(s)

• Significantly reduces dynamic power
consumption of entire subcircuits

992

D Q

CLK_ena

ENACLK

• AND gate on clock path
disables activity of flip-flop

• Glitches cause failures

never
do this

Clock gating (cont’d)

• Ensure that glitches and early ENA release
signals do not contaminate CKG signals!

• Modern standard-cell libraries often include
robust clock-gate cells

993

CLK CKG

ENA

CLK

ENA

CKG

time

6/8/2018

10

Safe clock gate implementation

• Single-edge triggered clock gate:

994

CLK CKG

ENA

D Q
ENA

CLK

CKG

CLK

ENA

CKG

time

Q

clean
signal

Reset
Every sequential circuit needs this!

995

6/8/2018

11

The reset signal

• Required to force circuit into
predefined state (initialization)

• Determines when to enter
a given state

• Usually applied at beginning of
time/operation

• Rarely applied during operation
 common exception: watchdog

996

Synchronous reset

997

RST

CLK

D Q

CLK

RST

D

Q

time

reset on
clock edge

active-low reset

• Resets whenever !RST=0 and at clock edge

• Applied as any other input to flip-flop

6/8/2018

12

Why is reset usually active low?

• During power-up, keeping !RST=0 is more
safe as voltage high level where gates are
operating correctly is not clearly defined

– Low level (GND) is always clearly defined

• It is easier for external sources (e.g.,
switches) to safely provide active low signal

– Active high requires VDD available at at switch

• Also a historical reason from TTL circuits:

– Could easily produce GND but not VDD

– Can sink more current than source
998

Synchronous reset (cont’d)

999

• !RST signal behaves as regular input signal

• Versions that set FF to 1 also exist

CLK

1
/x

1

0

D_in

ENA

D Q

!RST

D Q

CLK

1
/x

1

0

D_in

!RST

0

6/8/2018

13

Synchronous reset (cont’d)

• Synchronous reset advantages

– Circuit completely synchronous

– (Sometimes smaller flip-flops)

• Synchronous reset disadvantages

– Reset tree required to ensure all resets occur in
same clock cycle

–May require pulse stretch to ensure that all flip-
flops see !RST signal at rising clock edge

– Requires a clock to be present

1000

Asynchronous reset

• Resets state whenever !RST is low

• Clock edges do not matter
1001

RST

CLK

D Q

CLK

RST

D

Q

time

6/8/2018

14

Asynchronous reset (cont’d)

!RST A !(RST*A)

0 0 1

0 1 1

1 0 1

1 1 0

1002

• NAND gate either sets output
to 1 (if !RST low) or inverts A

From H. Kaeslin, “Digital Integrated Circuit Design,”
Cambridge Univ. Press, 2008

Asynchronous reset (cont’d)

• Asynchronous reset advantages

– Reset has priority over any other signal

– Reset happens without clock present

– Data paths are always clear of reset signals

– Synthesis tools understand what is going on

• Asynchronous reset disadvantages

– Reset de-assertion (=release) must occur within
the same clock cycle for all flip-flops

– Reset line is sensitive to glitches at any time

1003

6/8/2018

15

Fully asynchronous reset

• One must be careful that reset de-assertion
(!RST from 0 to 1) happens in same cycle

• This approach should be avoided
1004

RST

CLK

D Q

RST

CLK

D Q

clock tree

reset tree

CLK

RST
skew

try to
avoid this

!

Fully synchronized async. reset

• Reset and de-assertion happens in
synchronous way (w.r.t. the clock signal)

• Can use tools to generate reset tree
1005

RST

CLK

D Q

RST

CLK

D Q

clock tree

reset tree

CLK

RST
skew

6/8/2018

16

Async. reset, synch. de-assertion

• Reset is applied in fully asynchronous way

• De-assertion in synchronous way

• Can use tools to generate reset tree
1006

RST

CLK

D Q

RST

CLK

D Q

clock tree

CLK

RST
skew

reset tree

reset synchronizer

Include reset in ALL flip-flops*

1007
*unless you are a pro; but even then, think thrice (and also think about this slide)

overflow

signal

RST

CLK

D Q

RST

CLK

D Q

CLK

RST

CLK

D Q

0 X 0

0

1

• A simple example

• Reset cycle

6/8/2018

17

Include reset in ALL flip-flops*

1008
*unless you are a pro; but even then, think thrice (and also think about this slide)

overflow

signal

RST

CLK

D Q

RST

CLK

D Q

CLK

RST

CLK

D Q

1 0 X

X

0

• A simple example

• Cycle 1

Include reset in ALL flip-flops*

1009
*unless you are a pro; but even then, think thrice (and also think about this slide)

overflow

signal

RST

CLK

D Q

RST

CLK

D Q

CLK

RST

CLK

D Q

never
do this

0 1 0

X

1

• A simple example

• Cycles 2,3,……

will never be in
a defined state

6/8/2018

18

Things to remember

• Glitches must be avoided on reset signal

• No logic on reset signal allowed

• Never use reset to implement functionality

• Careful with timing on reset signal

• Distribute reset signal by fanout tree

• All flip-flops should have a reset input

– Simplifies design for test

– Avoids unknown states that remain forever

1010

Synchronization

Acquisition of asynchronous data

1011

6/8/2018

19

Signals between two clock
domains

• External input signal is not synchronized to the
CLK signal within the RHS circuit

• Can also be signal from another clock domain!
1012

CLK

external

input

signal

clock boundary

Signal may not be sampled correctly

• Signal may violate setup/hold timing

• Signal may remain metastable for long time

1013

CLK

external

input

signal

clock boundary

metastability

6/8/2018

20

Remember metastability?

1014

Vi2 Vo2Vo1Vi1

A

Vi1 = Vo2

B

C

metastable
point

• Once FF goes metastable, can stay
infinitely long at metastable point

• Common model: Probability of staying
at C decreases exponentially over time

Model for metastability

1015

• Probability that metastability remains
longer than time t’ can be approximated as

– tDQ, time from input to output

– T0/Tc describes probability that input changes
during setup/hold time (aperture)

– τs and T0 can be obtained from simulations

6/8/2018

21

The “solution”: Synchronizer FF

• Synchronization flip-flop reduces likelihood
of metastability but does not solve the
problem 1016

external

input

signal

clock boundary

CLK

synchronization

flip-flop

Probability of synchronizer failure

• Models probability of failure per second

– N average number of asynchronous input
changes per second

– Tc = clock period

– Tsetup = setup time

1017

6/8/2018

22

Mean-time between failure
(MTBF)

• MTBF is a design parameter

• Set to 1e19 seconds (lifetime of universe)

• MTBF can be increased by

– Fewer switching events

– Longer period, smaller setup time

1018

Example: single synchronizer

• Example parameters in 0.25um process:

– τs = 20 ps

– T0 = 15 ps

– N = 50 MHz

– Tc = 0.5ns (ignore setup time)

• What is the MTBF?

1019

6/8/2018

23

Solution: Multiple synchronizer
FFs

• Cascading multiple synchronization flip-flops
reduces probability of failure (increases
MTBF) 1020

external

input

signal

clock boundary

CLK

synchronization

flip-flops

How about multiple parallel signals?

• Problem: “fast bits” and “slow bits” may
be sampled in different periods

• Multiple sequential sync. FFs do not help!

1021

CLK

e
xt

e
rn

a
l i

n
p

u
t

si
g

n
a

ls

synchronization

flip-flops

so
m

e
 lo

g
ic

6/8/2018

24

Basic idea

1022

“I have data”

“I am ready”

combinational
logic

combinational
logic

Solution: Handshaking protocols

• Two or four phase protocols possible

• Synchronizer FFs only on req and ack
signals 1023

clock boundary

FSM FSM

ack

req

dataw bitsena ena

CLK1 CLK2

