ECE4740:
Digital VLSI Design

Lecture 25: Multiplier & CORDIC

902

Another key building block

Multiplier circuits

6/8/2018

6/8/2018

Multiplication as repeated additions

N
—>
e o o o Mmultiplicand
° multiplier
* ® partial
M e product > can be formed in parallel
* * array
1o number of
e o e 06 0 @ o o finalresult (=product)/ output bits
N+M
N+M

* Final result (product) is obtained through
multi-operand addition

Example
1110 if multiplier 1 then
0101 .
use multiplicand

1110

000 0«—- if multiplier O then

1110 e—— not use multiplicand
000 O«
[——»—O 1000110 add all partial products

* Produce M partial products of N-bit
* Sum these to produce M+N bit product

Partial product generation

B.

J

VUYL

|
PP, PP, PP, PP, — MES

* In most cases, the partial product array has
many zero rows that have no impact on result

Booth's recoding method

* Goal: Reduce number of generated PPs

* Example:
— Assume multiplier is 01111110
— Generates 6 non-zero PPs

— Recode multiplier to 10000010 [FENISeSY
— Recoded number has only 2 non-zero PPs

* Booth's recoding method reduces the
number of non-zero PPs by half

— Lower area and faster = but complicated ®

6/8/2018

The array multlpller/

_ ng ng X1g Xog Yo
multiplicand Y
\Xf,g ng X1g Xog Y1 Z0
HA FA FA HA
x3g ng x@ xog v, Yz,
l FA FA FA HA
AR R
multiplier
l_ FA |« FA |< FA HA
z, Yz, Yz, Yz, Yz,

908

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Critical paths of array multiplier

there are multiple
critical paths (of

equal length)

X, g X g X, Yo

X1g Xog Y1 2o

tmult ~ ((N - 1) + (M - 2))tcarry + (M - 1)tsum + tand

all critical paths need

to be optimized
simultaneously

- - ~%=}~_HA
x3g ng x@ xog v, Yz,
FA A o A
x3g ng x1g xog
,:I_ EA EA HA
lZ_7 WIZG Yz, Yz, Yz,

909

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

6/8/2018

6/8/2018

Carry-save multiplier

* Pass the multiplication results diagonally in
the array instead of on the right

tmult ~ (M - 1)tcar7“y + tC’PA + tand

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Carry-save multiplier (cont'd)

* Improved floor-plan = optimized for regularity

FA Multiplier Cell

Vector Merging Cell
X and Y signals are
broadcasted through array

911

Remember the Wallace tree adder

e Faster PP summation with Wallace tree

partial prod

ucts:

final CPA stage:

rearrange
PP tree

-

group even
more

G

first stage:

I.
group
1 signals

second stage:

912

Wallace tree multiplier

Partial products X3¥3 Xo¥3

X3Y2

XoY2 X3¥1Xi¥Y2 X3YoX1Y1 X2Yo XoVr

XoYs |XoY1XoY2 X1Yo |XoYo

» Propagation delay through tree T=0O(log(N))
* Final adder needs to be chosen carefully, WHY?

Image taken from: Design and Analysis of Low Power Compressors by Karthick, Karthika, Valarmathy

6/8/2018

Remember these tree adders?

 Critical signals are those :
for the middle output bits B o
@ SETRFTerTTTeY

Do | #, swsmmsesunmnmeemes

* LSB and MSB arrive early s

* One can design optimized ?%E%ﬁ%%é
prefix-tree adders for I
multiplier outputs :

Mkl

ic

©
914

Wallace tree multiplier (cont'd)

X3Y2 XoY2 X3¥1Xi¥Y2 X3YoX1Y1 X2Yo XoVr
Xo¥2 X1Yo |XoYo

 Design can be pipelined

— Common approach in DSPs

6/8/2018

Multiphier summary

* Optimization goals different to adders
— Multiple critical paths

» Different techniques to make it fast
— Use Booth's recoding
— Use carry save adder (CSA)
— Use Wallace tree (or Dadda tree)
— Wisely choose final adder
— Pipelining

Computer
Arithl?netic

The Swiss Army knife

CORDIC*

*B. Parhami, “Computer Arithmetic,” 2" Ed., Oxford Univ. Press, 2010

917

6/8/2018

How to compute other operations?

Trigonometric/hyperbolic functions
—sin(z), cos(z), and tan'(z)

—sinh(z), cosh(z), and tanh(z)

Division and multiplication: x/y and x*z
Norms: sqrt(x?+y?) or sqrt(x>-y?)

Angle of 2D vector, Givens rotation, etc....

CORDIC = coordinate
rotation digital computers

The inventor

» Jack E. Volder
— flight engineer during W\W2

— 1956 - replace analog
computer of B58 bomber
with digital computer

— 250 kHz clock rate (!)
— Found this in a formula book:

K, Rsin(6 £ ¢) = Rsin(d) £ 27" R cos(6)
KnRcos(0 £ ¢) = Rcos(0) F27"Rsin()

J. E. Volder, “The Birth of CORDIC,"” J. VLSI Sig. Proc., 2000

6/8/2018

Compute 2D rotations

[[cos(@),sin(¢)] Goal: rotate unit
vector [1,0] by ¢

¢\ (10

> >

* |dea: instead of performing the rotation at
once, perform a series of “pseudo rotations”

* Pseudo-rotations are hardware friendly

GGivens rotation
* 2D rotation: /

v]-[a0 w0

result of /) ! _
rotation Givens rotation: R(¢)

* Rewrite the Givens rotation matrix;

R(¢) = cos(¢) [tanl(qs) e]

6/8/2018

10

Givens rotation (cont')

* Rewrite the rotation matrix even more:

_ I —tan()
R(¢)= /1 + tan’(¢) [tan(¢) 1]

* Decompose the angle ¢ into K so-called
micro rotations:

O=¢o+P1+ -+ Pr_1

922

Micro rotation

* Restrict micro-rotation angles to satisfy:

tan(¢p;) = £27°

possible rotation
angles are
i=0 > +45.0°

]) o) i=1 2> £26.6°
* Micro-rotation matrix is given by [RE2eEsEad

Rio: i) — 1 1 —O'Z'Q_i
(0-272) - m O_iQ—i 1
_'_I
C@' g; - {—1,—|‘1}

923

6/8/2018

11

Pseudo rotation

* |dea: Approximate Given rotation with a
series of micro rotations: R(¢) ~ [1%! R(o;,)
* Ignore scaling ¢ during pseudo rotations

[15, Riosi) = 115 G T155 Ploy,)
* Pseudo rotation:

. 1 —O'iQ_i
P(O-MZ) - [O'@'Q_i 1]

o; € {_17 +1} requires only shifts
and additions

924

What Is a pseudo rotation?

pseudo
rotation rotation

N N

> >

* Pseudo-ration does not preserve length of vector

6/8/2018

12

6/8/2018

CORDIC example

» Rotate a vector from [1,0] to desired angle
using pseudo rotations:

3

+45°

CORDIC example (cont'd)

» Rotate a vector from [1,0] to desired angle
using pseudo rotations:

N l _26.570

e

13

6/8/2018

CORDIC example (cont'd)

» Rotate a vector from [1,0] to desired angle
using pseudo rotations:

3

+14.07°

e

CORDIC example (cont'd)

» Rotate a vector from [1,0] to desired angle
using pseudo rotations:

\ -7.13°

54

-

14

CORDIC example (cont'd)

* Rotate a vector from [1,0] to desired angle

using pseudo rotations:

‘ _-3.58°

$
/< rescaling
required!

CORDIC example (cont'd)

* Length of vector increases by about 1.647
due to pseudo-rotations

3

C =15, Ci ~ 0.6072

rescaling by factor C
~ is done once and
usually at the end

6/8/2018

15

How to determine angles ¢, ?

* Only need to chose: g; € {—17 -|_1}
» Keep track of how much vector was

pseUdO—rOtated so far: rotation angles pre-computed
and stored in a lookup table
Zi = Zi—1 — O'Z'¢7; ¢7, = arctan(2_l)

* Select g, such that z, is closer to ¢thanz;
— Can be done with simple sign comparisons

CORDIC algorithm summary

* Rewrite 2D rotation as

X =R(¢)x = x =[[;L, R(g)x
* Perform series of pseudo-rotations instead

of Givens rotations:

1 —0'7;2_1

. K—1 . .
x=][,_y Plosi)x P(oy,1) = 521 |

* Rescale result: x’ ~ C'x

6/8/2018

16

CORDIC properties

* K bit precision requires ~K i | deg. | rad. |

CORDIC pseudo-rotations £ 1008 e

« Achievable rotation angles . iiiﬁ EQ‘Z‘

between -99.7° to 99.7° 3 743 0124

— full range can be obtained by : ijs ggz

adding a 180° rotation 51 0en | e

(=mirror at origin if necessary) 7 045 0.008

« Can be implemented 2 gﬁ ggg‘z‘
efficiently in VLSI 10

Pseudo rotations = hardware friendly

HEEH

* VLSI implementation of pseudo rotation:

I arithmetic
right shift by i

carry propagate
adder/subtractor

6/8/2018

17

6/8/2018

VLSI architecture: rotation CORDIC

~

Z0) Z, is angle

| A to be
\+/-V + rotated

K-2

[o
*
z// to zero

936

Universal CORDIC*

Tiy1 1 —pd;27° x;
= i Zit1 = zi — d;oy
e P e | A

Rotation Vectoring
Mode T
d=sgn (z), z—0 4 =—sen (z@), ¥ 0
Circular x—= O —=K(xcosz—ysinz) x—w O —=K /X +y?
p=1 y— a —=K(ycosz+xsinz) y— @ —=0
a;=tan-"2-1 Z — 8 f—a O Z — 8 — 7+ tan_l(y/x]
Linear X—w O —»x X—w O [—ex
p=0 y—{ & [yt y—{ & [0
g=2- z7— g l—=0 Z — 8 —s 7 +y/x
Hyperbolic X—= O —= K xcoshz—ysinhz) Xx—w O —=K E—y?
p=-1 y—= @ —= K'(ycoshz+x sinhz) y—-= % —=0
g=tanh127 | 7w 8 =0 Z— 8 —= z+tanh ! y/x)

937

*B. Parhami, “Computer Arithmetic,” 2" Ed., Oxford Univ. Press, 2010

18

CORDIC summary

Essentially consists of shifts and adds
CORDIC has multiple modes

— All share same architecture

Used in VLSI circuits for communication
systems, array processing, etc.

Can be made faster and smaller using
— Carry save adders
— Architecture transforms

Play with the area/delay trade-off

Architecture transforms*

*H. Kaeslin, “Top-Down Digital VLSI Design,” Morgan Kaufmann, 2014

6/8/2018

19

Area/delay trade-off

In most cases, one can make a VLSI design

larger but faster or smaller but slower @

— Trade-off between area and propagation delay

Ultimate goal: smaller and faster

Architecture transforms very useful to find

suitable architecture in the trade-off space

Some transforms improve area and delay!

The AT diagram

A (area)

p large but
/ fast design
o

N

small but
/ slow design
n

T (time per

> data item)

* Hardware efficiency: HE = A*T

941

6/8/2018

20

6/8/2018

Hardware efficiency (HE)

A (area) P csion with

\ . lower HE ®

(\]

ATy~

T (time per
> data item)

« Constant hardware efficiency: C=A*T &/

942

Logarithmic AT diagram

HE still here ®

log(A) (area) ./ design with lower

3

Q

A

C=A*T _—

N

log(T) (time per
> data item)

» Reason: log(C)=log(A)+log(T)
* Helpful to visualize effect of transforms

21

10

A real-world example

delay [ps]

secret

designs

Mo | 0 0/ N%m g WVl
constant
HE [
10102 10° ‘:1‘0“ 10°
area [umz] s
Pareto optimality
10

)

delay [ps]
=)

designs on the
Pareto frontier are

to be preferred

secret

designs

rything in here
is worse in at least
one of the two
trics

area [umz] 15
J40

6/8/2018

22

Architecture transforms

* We use a CORDIC-like architecture to
show the most important transforms

* Same ideas apply to almost all VLSI designs

! * Isomorphic architecture
; - every operation has
Its own dedicated circuit
v
 We will improve the HE
v of CORDICs!

Transform 1: Replication

e

log(T)

log(A)

e |dea: Use N instances of the same unit
* Requires distribution and collection units
o A'=AN+A A T'=T/N+T o+ T

collr coll

6/8/2018

23

T2: Pipelining
<
- =
- [
Iog(T')

* Insert N flip-flops into datapath
® A,:A+N*Aﬁc, leT/N‘FTﬁc
* Pipelining improves hardware efficiency!

13: Iterative decomposition

log(A)

i oo HE =

log(T)

* Share resources & step-by-step execution
o A'=A/N+Ag T'=T+N*Tg
* |terative decomposition improves HE!

6/8/2018

24

T4 TI me Sh d I’I n g (or resource sharing/multiplexing)

log(X)

7

o A'=A/NHAAA AL

K’ # B Lo
log€T) #

* Process N different tasks on one unit
* Requires distributor, collector, and control unit
T'=T*N+Tg

F1,F2,F3

| | constant HE |
/

replication

time
plpelmlng l \harmg

iterative
decomposition

log(A)

log(T)

Summary of architecture transforms

* |Important:

—Don't forget
overhead of
each transform

— Possible
transforms
depend on
application

6/8/2018

25

Where Is retiming?

log(A)

AN

plpellnlng
& retiming

iterative

N\ EEE

replication

time

A

decomposition

log(T)

* Retiming

reduces delay

Retiming can
reduce or
Increase area

Effects of
retiming usually
smaller than

pipelining

Smaller designs can be preferable

N

log(A)

throughput
constraint

* Consider an

application that
allows
replication

Small designs
offer higher
granularity

Replicate to
achieve desired
throughput

6/8/2018

26

