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ECE4740: 
Digital VLSI Design

Lecture 25: Multiplier & CORDIC

902

Multiplier circuits

Another key building block

903
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Multiplication as repeated additions

• Final result (product) is obtained through 
multi-operand addition

904

multiplicand

multiplier

partial

product

array

final result (=product)

N

N+M

M can be formed in parallel

number of 
output bits 

N+M

Example

• Produce M partial products of N-bit

• Sum these to produce M+N bit product

905

1 1 1 0

0 1 0 1

1 1 1 0

0 0 0 0

1 1 1 0

if multiplier 1 then
use multiplicand

0 0 0 0 if multiplier 0 then
not use multiplicand

0 1 1 00 1 0 0 add all partial products  
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Partial product generation

• In most cases, the partial product array has 
many zero rows that have no impact on result

906

A3 A2 A1 A0

Bj

PP3 PP2 PP1 PP0

partial 
products

Booth’s recoding method

• Goal: Reduce number of generated PPs

• Example:

– Assume multiplier is 01111110

– Generates 6 non-zero PPs

– Recode multiplier to 10000010

– Recoded number has only 2 non-zero PPs

• Booth’s recoding method reduces the 
number of non-zero PPs by half

– Lower area and faster  but complicated 
907

1 indicates -1
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The array multiplier
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Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Critical paths of array multiplier
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equal length)
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to be optimized 
simultaneously

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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Carry-save multiplier

• Pass the multiplication results diagonally in 
the array instead of on the right

910

HA HA HA HA

FAFAFAHA

FAHA FA FA

FAHA FA HA vector merging 
adder  fast CPA

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Carry-save multiplier (cont’d)

• Improved floor-plan  optimized for regularity
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X and Y signals are broadcasted
through the complete array.

(          )

X and Y signals are 
broadcasted through array



6/8/2018

6

Remember the Wallace tree adder

• Faster PP summation with Wallace tree

912

partial products: first stage:

second stage:final CPA stage:

rearrange 
PP tree

group
signals

group even
more

Wallace tree multiplier

• Propagation delay through tree T=O(log(N))
• Final adder needs to be chosen carefully, WHY?

913

Partial products

First stage

Second stage

Final adder

FA FA FA

HA HA
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x3y3
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x3y2

x2y3

x1y1x3y0 x2y0 x0y1
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Image taken from: Design and Analysis of Low Power Compressors by Karthick, Karthika, Valarmathy
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Remember these tree adders?

• Critical signals are those 

for the middle output bits 

• LSB and MSB arrive early

• One can design optimized

prefix-tree adders for 

multiplier outputs

914

Wallace tree multiplier (cont’d)

• Design can be pipelined
– Common approach in DSPs

915

Partial products

First stage

Second stage

Final adder

FA FA FA

HA HA

FA

x3y3

z7 z6 z5 z4 z3 z2 z1 z0
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pipeline 
stage
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Multiplier summary

• Optimization goals different to adders

– Multiple critical paths

• Different techniques to make it fast

– Use Booth’s recoding

– Use carry save adder (CSA) 

– Use Wallace tree (or Dadda tree)

– Wisely choose final adder

– Pipelining
916

CORDIC*

The Swiss Army knife

917
*B. Parhami, “Computer Arithmetic,” 2nd Ed., Oxford Univ. Press, 2010
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How to compute other operations?

• Trigonometric/hyperbolic functions

– sin(z), cos(z), and tan-1(z)

– sinh(z), cosh(z), and tanh-1(z)

• Division and multiplication: x/y and x*z

• Norms: sqrt(x2+y2) or sqrt(x2-y2)

• Angle of 2D vector, Givens rotation, etc….

918

CORDIC = coordinate 
rotation digital computers

The inventor

919

• Jack E. Volder

– flight engineer during WW2

– 1956  replace analog 
computer of B58 bomber 
with digital computer

– 250 kHz clock rate (!)

– Found this in a formula book: 

J. E. Volder, “The Birth of CORDIC,” J. VLSI Sig. Proc., 2000
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Compute 2D rotations

• Idea: instead of performing the rotation at 
once, perform a series of “pseudo rotations”

• Pseudo-rotations are hardware friendly

920

• Goal: rotate unit 
vector [1,0] by ϕ

Givens rotation

• 2D rotation:

• Rewrite the Givens rotation matrix:

921

Givens rotation: 

start 
vector

result of 
rotation
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Givens rotation (cont’)

• Rewrite the rotation matrix even more:

• Decompose the angle    into K so-called 
micro rotations: 

922

Micro rotation

• Restrict micro-rotation angles to satisfy:

• Micro-rotation matrix is given by

923

possible rotation 
angles are

i=0  ±45.0°
i=1  ±26.6°
i=2  ±14.0°

…
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Pseudo rotation

• Idea: Approximate Given rotation with a 
series of micro rotations:

• Ignore scaling     during pseudo rotations

• Pseudo rotation:

924

requires only shifts 
and additions

What is a pseudo rotation?

925

rotation

pseudo
rotation

• Pseudo-ration does not preserve length of vector
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CORDIC example

• Rotate a vector from [1,0] to desired angle 
using pseudo rotations:

926

+45°

=28°

CORDIC example (cont’d)

• Rotate a vector from [1,0] to desired angle 
using pseudo rotations:

927

-26.57°
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CORDIC example (cont’d)

• Rotate a vector from [1,0] to desired angle 
using pseudo rotations:

928

+14.07°

CORDIC example (cont’d)

• Rotate a vector from [1,0] to desired angle 
using pseudo rotations:

929

-7.13°
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CORDIC example (cont’d)

• Rotate a vector from [1,0] to desired angle 
using pseudo rotations:

930

rescaling 
required!

-3.58°

CORDIC example (cont’d)

• Length of vector increases by about 1.647 
due to pseudo-rotations

931

rescaling by factor C 
is done once and 
usually at the end
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How to determine angles    ? 

• Only need to chose:

• Keep track of how much vector was 
pseudo-rotated so far:

• Select    such that    is closer to   than

– Can be done with simple sign comparisons    

932

rotation angles pre-computed 
and stored in a lookup table

CORDIC algorithm summary

• Rewrite 2D rotation as

• Perform series of pseudo-rotations instead 
of Givens rotations:

• Rescale result: 

933
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CORDIC properties

• K bit precision requires ~K 
CORDIC pseudo-rotations

• Achievable rotation angles 
between -99.7° to 99.7°

– full range can be obtained by 
adding a 180° rotation 
(=mirror at origin if necessary)

• Can be implemented 
efficiently in VLSI

934

i deg. rad.

0 45.00 0.785

1 26.57 0.464

2 14.04 0.245

3 7.13 0.124

4 3.58 0.062

5 1.79 0.031

6 0.90 0.016

7 0.45 0.008

8 0.22 0.004

9 0.11 0.002

10 … …

Pseudo rotations = hardware friendly

• VLSI implementation of pseudo rotation:

935

-/+ +/-+ +

arithmetic 
right shift by icarry propagate 

adder/subtractor
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VLSI architecture: rotation CORDIC

936

-/+ +/-+ +

-/+ +/-+ +

xx

…
+/- +

+/- +

+/- +-/+ +/-+ +

…

z0 is angle 
to be 

rotated

z’ goes
to zero

Universal CORDIC*

937
*B. Parhami, “Computer Arithmetic,” 2nd Ed., Oxford Univ. Press, 2010
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CORDIC summary

• Essentially consists of shifts and adds

• CORDIC has multiple modes

– All share same architecture

• Used in VLSI circuits for communication 
systems, array processing, etc.

• Can be made faster and smaller using

– Carry save adders

– Architecture transforms

938

Architecture transforms*

Play with the area/delay trade-off

939*H. Kaeslin, “Top-Down Digital VLSI Design,” Morgan Kaufmann, 2014
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Area/delay trade-off

• In most cases, one can make a VLSI design 

larger but faster or smaller but slower 

– Trade-off between area and propagation delay

• Ultimate goal: smaller and faster

• Architecture transforms very useful to find 

suitable architecture in the trade-off space 

• Some transforms improve area and delay!

940

The AT diagram

• Hardware efficiency: HE = A*T

941

A (area)

T (time per
data item)

large but 
fast design

small but 
slow design

medium speed 
and area
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Hardware efficiency (HE)

• Constant hardware efficiency: C=A*T

942

A (area)

T (time per
data item)

C=A*T

all designs on 
this hyperbola 
have same HE

design with 
lower HE 

Logarithmic AT diagram

• Reason: log(C)=log(A)+log(T)

• Helpful to visualize effect of transforms
943

log(A) (area)

log(T) (time per
data item)

C=A*T

designs of same 
HE are on a line 

with slope -1

design with lower 
HE still here 
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A real-world example

944
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Architecture transforms

• We use a CORDIC-like architecture to 
show the most important transforms

• Same ideas apply to almost all VLSI designs

946

pseudo 
rotation

pseudo 
rotation

pseudo 
rotation

• Isomorphic architecture
 every operation has 
its own dedicated circuit

• We will improve the HE 
of CORDICs!

Transform 1: Replication

• Idea: Use N instances of the same unit

• Requires distribution and collection units

• A’=A*N+Adist+Acoll, T’=T/N+Tdist+Tcoll
947

lo
g
(A

) 

log(T)

�same HE
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T2: Pipelining

• Insert N flip-flops into datapath

• A’=A+N*Aff, T’�T/N+Tff

• Pipelining improves hardware efficiency!
948

lo
g
(A

) 

log(T)

improved HE

T3: Iterative decomposition

• Share resources & step-by-step execution

• A’�A/N+Aff, T’�T+N*Tff

• Iterative decomposition improves HE!
949

lo
g
(A

) 

log(T)

improved HE
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T4: Time sharing (or resource sharing/multiplexing)

• Process N different tasks on one unit

• Requires distributor, collector, and control unit

• A’�A/N+Aff+Adist+Acoll, T’�T*N+Tff
950

lo
g
(A

) 

log(T)

F1

F2

F3

F1,F2,F3
control

�same HE

Summary of architecture transforms

951

lo
g
(A

) 

constant HE

replication

pipelining

iterative
decomposition

time
sharing

log(T)

• Important:

– Don’t forget 
overhead of 
each transform

– Possible 
transforms 
depend on 
application
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Where is retiming?

952

lo
g
(A

) 
constant HE

replication

pipelining

iterative
decomposition

time
sharing

log(T)

& retiming

• Retiming 
reduces delay

• Retiming can 
reduce or 
increase area

• Effects of 
retiming usually 
smaller than 
pipelining

Smaller designs can be preferable

953

lo
g
(A

) 

log(T)

• Consider an 
application that 
allows 
replication

• Small designs 
offer higher 
granularity

• Replicate to 
achieve desired 
throughput

throughput
constraint


