
6/8/2018

1

ECE4740:
Digital VLSI Design

Lecture 25: Multiplier & CORDIC

902

Multiplier circuits

Another key building block

903

6/8/2018

2

Multiplication as repeated additions

• Final result (product) is obtained through
multi-operand addition

904

multiplicand

multiplier

partial

product

array

final result (=product)

N

N+M

M can be formed in parallel

number of
output bits

N+M

Example

• Produce M partial products of N-bit

• Sum these to produce M+N bit product

905

1 1 1 0

0 1 0 1

1 1 1 0

0 0 0 0

1 1 1 0

if multiplier 1 then
use multiplicand

0 0 0 0 if multiplier 0 then
not use multiplicand

0 1 1 00 1 0 0 add all partial products

6/8/2018

3

Partial product generation

• In most cases, the partial product array has
many zero rows that have no impact on result

906

A3 A2 A1 A0

Bj

PP3 PP2 PP1 PP0

partial
products

Booth’s recoding method

• Goal: Reduce number of generated PPs

• Example:

– Assume multiplier is 01111110

– Generates 6 non-zero PPs

– Recode multiplier to 10000010

– Recoded number has only 2 non-zero PPs

• Booth’s recoding method reduces the
number of non-zero PPs by half

– Lower area and faster  but complicated 
907

1 indicates -1

6/8/2018

4

The array multiplier

908

Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

multiplicand

multiplier

partial
product

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Critical paths of array multiplier

909

Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

there are multiple
critical paths (of

equal length)

all critical paths need
to be optimized
simultaneously

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

6/8/2018

5

Carry-save multiplier

• Pass the multiplication results diagonally in
the array instead of on the right

910

HA HA HA HA

FAFAFAHA

FAHA FA FA

FAHA FA HA vector merging
adder  fast CPA

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Carry-save multiplier (cont’d)

• Improved floor-plan  optimized for regularity

911

SCSCSCSC

SCSCSCSC

SCSCSCSC

S
C

S
C

S
C

S
C

Z0

Z
1

Z2

Z3Z4Z5Z6Z7

X
0

X
1

X
2

X
3

Y1

Y2

Y3

Y0

Vector Merging Cell

HA Multiplier Cell

FA Multiplier Cell

X and Y signals are broadcasted
through the complete array.

()

X and Y signals are
broadcasted through array

6/8/2018

6

Remember the Wallace tree adder

• Faster PP summation with Wallace tree

912

partial products: first stage:

second stage:final CPA stage:

rearrange
PP tree

group
signals

group even
more

Wallace tree multiplier

• Propagation delay through tree T=O(log(N))
• Final adder needs to be chosen carefully, WHY?

913

Partial products

First stage

Second stage

Final adder

FA FA FA

HA HA

FA

x3y3

z7 z6 z5 z4 z3 z2 z1 z0

x3y2

x2y3

x1y1x3y0 x2y0 x0y1

x0y2

x2y2

x1y3

x1y2x3y1

x0y3 x1y0 x0y0x2y1

Image taken from: Design and Analysis of Low Power Compressors by Karthick, Karthika, Valarmathy

6/8/2018

7

Remember these tree adders?

• Critical signals are those

for the middle output bits

• LSB and MSB arrive early

• One can design optimized

prefix-tree adders for

multiplier outputs

914

Wallace tree multiplier (cont’d)

• Design can be pipelined
– Common approach in DSPs

915

Partial products

First stage

Second stage

Final adder

FA FA FA

HA HA

FA

x3y3

z7 z6 z5 z4 z3 z2 z1 z0

x3y2

x2y3

x1y1x3y0 x2y0 x0y1

x0y2

x2y2

x1y3

x1y2x3y1

x0y3 x1y0 x0y0x2y1

pipeline
stage

6/8/2018

8

Multiplier summary

• Optimization goals different to adders

– Multiple critical paths

• Different techniques to make it fast

– Use Booth’s recoding

– Use carry save adder (CSA)

– Use Wallace tree (or Dadda tree)

– Wisely choose final adder

– Pipelining
916

CORDIC*

The Swiss Army knife

917
*B. Parhami, “Computer Arithmetic,” 2nd Ed., Oxford Univ. Press, 2010

6/8/2018

9

How to compute other operations?

• Trigonometric/hyperbolic functions

– sin(z), cos(z), and tan-1(z)

– sinh(z), cosh(z), and tanh-1(z)

• Division and multiplication: x/y and x*z

• Norms: sqrt(x2+y2) or sqrt(x2-y2)

• Angle of 2D vector, Givens rotation, etc….

918

CORDIC = coordinate
rotation digital computers

The inventor

919

• Jack E. Volder

– flight engineer during WW2

– 1956  replace analog
computer of B58 bomber
with digital computer

– 250 kHz clock rate (!)

– Found this in a formula book:

J. E. Volder, “The Birth of CORDIC,” J. VLSI Sig. Proc., 2000

6/8/2018

10

Compute 2D rotations

• Idea: instead of performing the rotation at
once, perform a series of “pseudo rotations”

• Pseudo-rotations are hardware friendly

920

• Goal: rotate unit
vector [1,0] by ϕ

Givens rotation

• 2D rotation:

• Rewrite the Givens rotation matrix:

921

Givens rotation:

start
vector

result of
rotation

6/8/2018

11

Givens rotation (cont’)

• Rewrite the rotation matrix even more:

• Decompose the angle into K so-called
micro rotations:

922

Micro rotation

• Restrict micro-rotation angles to satisfy:

• Micro-rotation matrix is given by

923

possible rotation
angles are

i=0  ±45.0°
i=1  ±26.6°
i=2  ±14.0°

…

6/8/2018

12

Pseudo rotation

• Idea: Approximate Given rotation with a
series of micro rotations:

• Ignore scaling during pseudo rotations

• Pseudo rotation:

924

requires only shifts
and additions

What is a pseudo rotation?

925

rotation

pseudo
rotation

• Pseudo-ration does not preserve length of vector

6/8/2018

13

CORDIC example

• Rotate a vector from [1,0] to desired angle
using pseudo rotations:

926

+45°

=28°

CORDIC example (cont’d)

• Rotate a vector from [1,0] to desired angle
using pseudo rotations:

927

-26.57°

6/8/2018

14

CORDIC example (cont’d)

• Rotate a vector from [1,0] to desired angle
using pseudo rotations:

928

+14.07°

CORDIC example (cont’d)

• Rotate a vector from [1,0] to desired angle
using pseudo rotations:

929

-7.13°

6/8/2018

15

CORDIC example (cont’d)

• Rotate a vector from [1,0] to desired angle
using pseudo rotations:

930

rescaling
required!

-3.58°

CORDIC example (cont’d)

• Length of vector increases by about 1.647
due to pseudo-rotations

931

rescaling by factor C
is done once and
usually at the end

6/8/2018

16

How to determine angles ?

• Only need to chose:

• Keep track of how much vector was
pseudo-rotated so far:

• Select such that is closer to than

– Can be done with simple sign comparisons

932

rotation angles pre-computed
and stored in a lookup table

CORDIC algorithm summary

• Rewrite 2D rotation as

• Perform series of pseudo-rotations instead
of Givens rotations:

• Rescale result:

933

6/8/2018

17

CORDIC properties

• K bit precision requires ~K
CORDIC pseudo-rotations

• Achievable rotation angles
between -99.7° to 99.7°

– full range can be obtained by
adding a 180° rotation
(=mirror at origin if necessary)

• Can be implemented
efficiently in VLSI

934

i deg. rad.

0 45.00 0.785

1 26.57 0.464

2 14.04 0.245

3 7.13 0.124

4 3.58 0.062

5 1.79 0.031

6 0.90 0.016

7 0.45 0.008

8 0.22 0.004

9 0.11 0.002

10 … …

Pseudo rotations = hardware friendly

• VLSI implementation of pseudo rotation:

935

-/+ +/-+ +

arithmetic
right shift by icarry propagate

adder/subtractor

6/8/2018

18

VLSI architecture: rotation CORDIC

936

-/+ +/-+ +

-/+ +/-+ +

xx

…
+/- +

+/- +

+/- +-/+ +/-+ +

…

z0 is angle
to be

rotated

z’ goes
to zero

Universal CORDIC*

937
*B. Parhami, “Computer Arithmetic,” 2nd Ed., Oxford Univ. Press, 2010

6/8/2018

19

CORDIC summary

• Essentially consists of shifts and adds

• CORDIC has multiple modes

– All share same architecture

• Used in VLSI circuits for communication
systems, array processing, etc.

• Can be made faster and smaller using

– Carry save adders

– Architecture transforms

938

Architecture transforms*

Play with the area/delay trade-off

939*H. Kaeslin, “Top-Down Digital VLSI Design,” Morgan Kaufmann, 2014

6/8/2018

20

Area/delay trade-off

• In most cases, one can make a VLSI design

larger but faster or smaller but slower 

– Trade-off between area and propagation delay

• Ultimate goal: smaller and faster

• Architecture transforms very useful to find

suitable architecture in the trade-off space

• Some transforms improve area and delay!

940

The AT diagram

• Hardware efficiency: HE = A*T

941

A (area)

T (time per
data item)

large but
fast design

small but
slow design

medium speed
and area

6/8/2018

21

Hardware efficiency (HE)

• Constant hardware efficiency: C=A*T

942

A (area)

T (time per
data item)

C=A*T

all designs on
this hyperbola
have same HE

design with
lower HE 

Logarithmic AT diagram

• Reason: log(C)=log(A)+log(T)

• Helpful to visualize effect of transforms
943

log(A) (area)

log(T) (time per
data item)

C=A*T

designs of same
HE are on a line

with slope -1

design with lower
HE still here 

6/8/2018

22

A real-world example

944

10
2

10
3

10
4

10
5

10
2

10
3

10
4

area [um
2
]

d
e
la

y
 [

p
s
]

carry skip

carry select

tree adder

ripple

hybrid designs

line of
constant

HE
best HE

secret
designs

Pareto optimality

945

10
2

10
3

10
4

10
5

10
2

10
3

10
4

area [um
2
]

d
e
la

y
 [

p
s
]

carry skip

carry select

tree adder

ripple

hybrid designs

everything in here
is worse in at least

one of the two
metrics

designs on the
Pareto frontier are

to be preferred

secret
designs

6/8/2018

23

Architecture transforms

• We use a CORDIC-like architecture to
show the most important transforms

• Same ideas apply to almost all VLSI designs

946

pseudo
rotation

pseudo
rotation

pseudo
rotation

• Isomorphic architecture
 every operation has
its own dedicated circuit

• We will improve the HE
of CORDICs!

Transform 1: Replication

• Idea: Use N instances of the same unit

• Requires distribution and collection units

• A’=A*N+Adist+Acoll, T’=T/N+Tdist+Tcoll
947

lo
g
(A

)

log(T)

�same HE

6/8/2018

24

T2: Pipelining

• Insert N flip-flops into datapath

• A’=A+N*Aff, T’�T/N+Tff

• Pipelining improves hardware efficiency!
948

lo
g
(A

)

log(T)

improved HE

T3: Iterative decomposition

• Share resources & step-by-step execution

• A’�A/N+Aff, T’�T+N*Tff

• Iterative decomposition improves HE!
949

lo
g
(A

)

log(T)

improved HE

6/8/2018

25

T4: Time sharing (or resource sharing/multiplexing)

• Process N different tasks on one unit

• Requires distributor, collector, and control unit

• A’�A/N+Aff+Adist+Acoll, T’�T*N+Tff
950

lo
g
(A

)

log(T)

F1

F2

F3

F1,F2,F3
control

�same HE

Summary of architecture transforms

951

lo
g
(A

)

constant HE

replication

pipelining

iterative
decomposition

time
sharing

log(T)

• Important:

– Don’t forget
overhead of
each transform

– Possible
transforms
depend on
application

6/8/2018

26

Where is retiming?

952

lo
g
(A

)
constant HE

replication

pipelining

iterative
decomposition

time
sharing

log(T)

& retiming

• Retiming
reduces delay

• Retiming can
reduce or
increase area

• Effects of
retiming usually
smaller than
pipelining

Smaller designs can be preferable

953

lo
g
(A

)

log(T)

• Consider an
application that
allows
replication

• Small designs
offer higher
granularity

• Replicate to
achieve desired
throughput

throughput
constraint

