ECE4740: Digital VLSI Design

Lecture 25: Multiplier \& CORDIC

Another key building block
Multiplier circuits

Multiplication as repeated additions

- Final result (product) is obtained through multi-operand addition

Example

if multiplier 1 then use multiplicand
if multiplier 0 then
not use multiplicand
add all partial products

- Produce M partial products of N -bit
- Sum these to produce $\mathrm{M}+\mathrm{N}$ bit product

Partial product generation

- In most cases, the partial product array has many zero rows that have no impact on result

Booth's recoding method

- Goal: Reduce number of generated PPs
- Example:
- Assume multiplier is 01111110
- Generates 6 non-zero PPs
- Recode multiplier to 10000010 1 indicates - 1
- Recoded number has only 2 non-zero PPs
- Booth's recoding method reduces the number of non-zero PPs by half
- Lower area and faster \rightarrow but complicated $*$

Critical paths of array multiplier

$t_{\text {mult }} \approx((N-1)+(M-2)) t_{\text {carry }}+(M-1) t_{\text {sum }}+t_{\text {and }}$

Carry-save multiplier

- Pass the multiplication results diagonally in the array instead of on the right

Carry-save multiplier (cont'd)

- Improved floor-plan \rightarrow optimized for regularity

Remember the Wallace tree adder

- Faster PP summation with Wallace tree

Wallace tree multiplier

- Propagation delay through tree $\mathrm{T}=\mathrm{O}(\log (\mathrm{N}))$
- Final adder needs to be chosen carefully, WHY?

Remember these tree adders?

- Critical signals are those for the middle output bits

- LSB and MSB arrive early
- One can design optimized
 prefix-tree adders for multiplier outputs

Wallace tree multiplier (cont'd)

Multiplier summary

- Optimization goals different to adders
- Multiple critical paths
- Different techniques to make it fast
- Use Booth's recoding
- Use carry save adder (CSA)
- Use Wallace tree (or Dadda tree)
- Wisely choose final adder
- Pipelining

How to compute other operations?

- Trigonometric/hyperbolic functions
$-\sin (z), \cos (z)$, and $\tan ^{-1}(z)$
$-\sinh (z), \cosh (z)$, and $\tanh ^{-1}(z)$
- Division and multiplication: x / y and $x^{*} z$
- Norms: $\operatorname{sqrt}\left(x^{2}+y^{2}\right)$ or $\operatorname{sqrt}\left(x^{2}-y^{2}\right)$
- Angle of 2D vector, Givens rotation, etc....

CORDIC = coordinate rotation digital computers

The inventor

- Jack E. Volder
- flight engineer during WW2
- $1956 \rightarrow$ replace analog computer of B58 bomber with digital computer

- 250 kHz clock rate (!)
- Found this in a formula book:
$K_{n} R \sin (\theta \pm \phi)=R \sin (\theta) \pm 2^{-n} R \cos (\theta)$
$K_{n} R \cos (\theta \pm \phi)=R \cos (\theta) \mp 2^{-n} R \sin (\theta)$

Compute 2D rotations

- Goal: rotate unit vector [1,0] by ϕ
- Idea: instead of performing the rotation at once, perform a series of "pseudo rotations"
- Pseudo-rotations are hardware friendly

Givens rotation

- 2D rotation:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\underbrace{\left[\begin{array}{cc}\cos (\phi) & -\sin (\phi) \\ \sin (\phi) & \cos (\phi)\end{array}\right]}_{\substack{\text { restlt of } \\ \text { rolation }}}\left[\begin{array}{l}x \\ y\end{array}\right]$
- Rewrite the Givens rotation matrix:

$$
\mathbf{R}(\phi)=\cos (\phi)\left[\begin{array}{cc}
1 & -\tan (\phi) \\
\tan (\phi) & 1
\end{array}\right]
$$

Givens rotation (cont')

- Rewrite the rotation matrix even more:

$$
\mathbf{R}(\phi)=\frac{1}{\sqrt{1+\tan ^{2}(\phi)}}\left[\begin{array}{cc}
1 & -\tan (\phi) \\
\tan (\phi) & 1
\end{array}\right]
$$

- Decompose the angle ϕ into K so-called micro rotations:

$$
\phi=\phi_{0}+\phi_{1}+\cdots+\phi_{K-1}
$$

Micro rotation

- Restrict micro-rotation angles to satisfy:

$$
\tan \left(\phi_{i}\right)= \pm 2^{-i}
$$

\qquad

- Micro-rotation matrix is given by

$$
\begin{array}{r}
\mathbf{R}\left(\sigma_{i}, i\right)=\underbrace{\frac{1}{\sqrt{1+2^{-2 i}}}}_{C_{i}}\left[\begin{array}{cc}
1 & -\sigma_{i} 2^{-i} \\
\sigma_{i} 2^{-i} & 1
\end{array}\right] \\
\quad \sigma_{i} \in\{-1,+1\}
\end{array}
$$

Pseudo rotation

- Idea: Approximate Given rotation with a series of micro rotations: $\mathbf{R}(\phi) \approx \prod_{i=0}^{K-1} \mathbf{R}\left(\sigma_{i}, i\right)$
- Ignore scaling C_{i} during pseudo rotations

$$
\prod_{i=0}^{K} \mathbf{R}\left(\sigma_{i}, i\right)=\prod_{i=0}^{K-1} C_{i} \prod_{i=0}^{K-1} \mathbf{P}\left(\sigma_{i}, i\right)
$$

- Pseudo rotation:

$$
\sigma_{i} \in\{-1,+1\}<\underbrace{\mathbf{P}\left(\sigma_{i}, i\right)=\left[\begin{array}{c}
\text { requires only shifts } \\
\text { and additions }
\end{array}\right.}_{\substack{1 \\
\sigma_{i} 2^{-i}}}
$$

What is a pseudo rotation?

pseudo
rotation

- Pseudo-ration does not preserve length of vector

CORDIC example

- Rotate a vector from $[1,0]$ to desired angle using pseudo rotations:

CORDIC example (cont'd)

- Rotate a vector from $[1,0]$ to desired angle using pseudo rotations:

CORDIC example (cont'd)

- Rotate a vector from $[1,0]$ to desired angle using pseudo rotations:

CORDIC example (cont'd)

- Rotate a vector from $[1,0]$ to desired angle using pseudo rotations:

CORDIC example (cont'd)

- Rotate a vector from $[1,0]$ to desired angle using pseudo rotations:

CORDIC example (cont'd)

- Length of vector increases by about 1.647 due to pseudo-rotations

How to determine angles ϕ_{i} ?

- Only need to chose: $\sigma_{i} \in\{-1,+1\}$
- Keep track of how much vector was pseudo-rotated so far:

- Select σ_{i} such that z_{i} is closer to ϕ than z_{i-1}
- Can be done with simple sign comparisons

CORDIC algorithm summary

- Rewrite 2D rotation as

$$
\mathbf{x}^{\prime}=\mathbf{R}(\phi) \mathbf{x} \quad \Longrightarrow \mathbf{x}^{\prime}=\prod_{i=0}^{K-1} \mathbf{R}\left(\phi_{i}\right) \mathbf{x}
$$

- Perform series of pseudo-rotations instead of Givens rotations:

$$
\tilde{\mathbf{x}}=\prod_{i=0}^{K-1} \mathbf{P}\left(\sigma_{i}, i\right) \mathbf{x} \quad \mathbf{P}\left(\sigma_{i}, i\right)=\left[\begin{array}{cc}
1 & -\sigma_{i} 2^{-1} \\
\sigma_{i} 2^{-1} & 1
\end{array}\right]
$$

- Rescale result: $\mathbf{x}^{\prime} \approx C \tilde{\mathbf{x}}$

CORDIC properties

- K bit precision requires $\sim \mathrm{K}$ CORDIC pseudo-rotations
- Achievable rotation angles between -99.7° to 99.7°
- full range can be obtained by adding a 180° rotation (=mirror at origin if necessary)
- Can be implemented efficiently in VLSI

\mathbf{i}	deg.	rad.
0	45.00	0.785
1	26.57	0.464
2	14.04	0.245
3	7.13	0.124
4	3.58	0.062
5	1.79	0.031
6	0.90	0.016
7	0.45	0.008
8	0.22	0.004
9	0.11	0.002
10	\ldots	\ldots

Pseudo rotations = hardware friendly

$$
\left[\begin{array}{l}
\tilde{x} \\
\tilde{y}
\end{array}\right]=\left[\begin{array}{cc}
1 & -\sigma_{i} 2^{-i} \\
\sigma_{i} 2^{-i} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- VLSI implementation of pseudo rotation:

VLSI architecture: rotation CORDIC

Universal CORDIC*

$$
\left[\begin{array}{l}
x_{i+1} \\
y_{i+1}
\end{array}\right]=\left[\begin{array}{cc}
1 & -\mu d_{i} 2^{-i} \\
d_{i} 2^{-i} & 1
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right] \quad z_{i+1}=z_{i}-d_{i} \alpha_{i}
$$

Mode	Rotation	Vectoring
	$d_{i}=\operatorname{sgn}\left(z_{i}\right), \quad z \rightarrow 0$	$d_{i}=-\operatorname{sgn}\left(x_{i} y_{i}\right), \quad y \rightarrow 0$
Circular $\begin{gathered} \mu=1 \\ a_{\mathrm{i}}=\tan ^{-1} 2^{-i} \end{gathered}$		
$\begin{gathered} \text { Linear } \\ \mu=0 \\ a_{i}=2^{-i} \end{gathered}$		
Hyperbolic $\begin{gathered} \mu=-1 \\ a_{i}=\tanh ^{-1} 2^{-i} \end{gathered}$		$\begin{aligned} & x \rightarrow 0 \\ & y \longrightarrow K \sqrt{x^{2}-y^{2}} \\ & z \rightarrow 0 \\ & 0 \\ & 0 \end{aligned}>z+\tanh ^{-1}(y / x)=0$

CORDIC summary

- Essentially consists of shifts and adds
- CORDIC has multiple modes
- All share same architecture
- Used in VLSI circuits for communication systems, array processing, etc.
- Can be made faster and smaller using
- Carry save adders
- Architecture transforms

Play with the area/delay trade-off

Architecture transforms*

Area/delay trade-off

- In most cases, one can make a VLSI design larger but faster or smaller but slower $*$
- Trade-off between area and propagation delay
- Ultimate goal: smaller and faster
- Architecture transforms very useful to find suitable architecture in the trade-off space
- Some transforms improve area and delay!

The AT diagram

- Hardware efficiency: $\mathrm{HE}=\mathrm{A}^{*} \boldsymbol{}$ T

Hardware efficiency (HE)

- Constant hardware efficiency: C=A*T 撸

Logarithmic AT diagram

- Reason: $\log (\mathrm{C})=\log (\mathrm{A})+\log (\mathrm{T})$
- Helpful to visualize effect of transforms

A real-world example

Pareto optimality

Architecture transforms

- We use a CORDIC-like architecture to show the most important transforms
- Same ideas apply to almost all VLSI designs

- Isomorphic architecture \rightarrow every operation has its own dedicated circuit
- We will improve the HE of CORDICs!

Transform 1: Replication

- Idea: Use N instances of the same unit
- Requires distribution and collection units
- $\mathrm{A}^{\prime}=\mathrm{A}^{*} \mathrm{~N}+\mathrm{A}_{\text {dist }}+\mathrm{A}_{\text {coll }}, \mathrm{T}^{\prime}=\mathrm{T} / \mathrm{N}+\mathrm{T}_{\text {dist }}+\mathrm{T}_{\text {coll }}$

T2: Pipelining

- Insert N flip-flops into datapath
- $A^{\prime}=A+N^{*} A_{f f}, T^{\prime} \approx T / N+T_{f f}$
- Pipelining improves hardware efficiency!

T3: Iterative decomposition

- Share resources \& step-by-step execution
- $A^{\prime} \approx A / N+A_{f f}, T^{\prime} \approx T+N^{*} T_{f f}$
- Iterative decomposition improves HE!

T4: Time sharing (or resource sharing/multiplexing)

- Process N different tasks on one unit
- Requires distributor, collector, and control unit
- $A^{\prime} \approx A / N+A_{f f}+A_{\text {dist }}+A_{\text {coll }}, T^{\prime} \approx T^{*} N+T_{\text {ff }}$

Summary of architecture transforms

- Important:
- Don't forget overhead of each transform
- Possible transforms depend on application

Where is retiming?

- Retiming reduces delay
- Retiming can reduce or increase area
- Effects of retiming usually smaller than pipelining

Smaller designs can be preferable

- Consider an application that allows replication
- Small designs offer higher granularity
- Replicate to achieve desired throughput

