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ECE4740: 
Digital VLSI Design

Lecture 24: Carry save adder & multipliers
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Switching activity and power

A common problem in Homework 3

867
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Recap: dynamic power consumption

• Dynamic power consumption dominated by 
charging/discharging capacitors

• Switching activity     depends on logic
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clock 
frequency

node/gate 
index

switching activity 
(per clock cycle)

load capacitance
for node k

Dynamic power consumption

• Static component

– only dependent on 
topology of logic network

• Dynamic component

– dependent on dynamic 
behavior  glitching
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Probabilistic model

• Depends on logic function

• Assume 

– N-input logic gate (2N outputs)

– inputs are i.i.d. uniformly distributed

• Transition probability is

870

#of zero entries 
in truth table

#of one entries 
in truth table

A B not(A+B)

0 0 1

0 1 0

1 0 0

1 1 0

Probabilistic model (cont’d)

• Only clock achieves >50% toggle rate
871

A B not(A+B)

0 0 1

0 1 0

1 0 0

1 1 0

NOR2 gate with iid inputs

A B XOR(A,B)

0 0 0

0 1 1

1 0 1

1 1 0

XOR gate with iid inputs
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Non-uniform input statistics

• pa = probability that input A is 1

• pb = probability that input B is 1

• Complicated & not very useful in practice

872

switching activity

AND 2*(1-pa*pb)pa*pb

OR 2*(1-pa)*(1-pb)*[1-(1-pa)*(1-pb)]

XOR 2*[1-(pa+pb-2*pa*pb)]*(pa+pb-2*pa*pb)

No need for a general formula!

• You only need probabilities pa, 
pb, and pc of output being 1

– Assume they are independent 
across inputs and time

• Compute probability of 
f(A,B,C)=1

– P1=(1-pa)*pb*(1-pc)+pa*pb*pc

– f(A,B,C)=0    P0=1-P1

• Compute transition probability
873

A B C f(A,B,C)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1
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Switching probabilities?

• Consider two time steps 

• How likely is a transition going to happen?

– Pr[01] = P0*P1 

– Pr[10] = P1*P0

874

0

1 1

0

time1 time2

α = 2*P1*P0

only correct if 
data is 

independent 
over time

Inter-signal correlations

• Switching activity difficult to estimate as 
there is correlation across space and time

• One has to use conditional probabilities

• Timing does matter  glitches
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Power reduction via restructuring

• Logic restructuring

• Chain implementation: lower total switching 
activity than tree (for i.i.d. uniform inputs)

• Insert signals with higher transition rate at 
the end of the chain
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2*(1-0.25)*0.25 = 6/16

14/64

30/256

6/16
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Pd=0.5
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Pb=0.5

Pc=0.5

Pd=0.5

switching 
activity

Simulative static activity analysis

• Generate a series of representative inputs

• Simulate and record the logic activity

• Use these activities along with the node 
capacitances to estimate the power

• There are tools that help you! YAY!

877
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Dynamic component: glitches

• In this (silly) example: output should be 1

• Propagation delay of inverter causes glitch

• Extraction of glitching activity requires 
accurate timing models and CAD tools!

878
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Z
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X
Z

X
glitch

Reduce glitching: balance delays

• Glitching (or dynamic hazards) due to 
mismatch in path length of logic network

• Remember the chain vs. tree logic
– contradicting design goals…
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Optimization for power not easy

• Dynamic power depends on 
– logic topology, gate timing, input statistics

• There is no standard approach:
– implement logic with as few gates as possible

– reduce voltage if you can

– optimize for speed and reduce voltage

– don’t oversize your gates (just right!)

– reduce toggle & glitch activities

– balance delays (avoid glitches)

– keep capacitances low (wires etc.)

880

Carry save adders

Faster multi-operand additions

881
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Multi-operand addition

• Add four N-bit numbers: Sum = A+B+C+D

• Straightforward solution: Use 3 N-bit carry 
propagate adders  large and slow

882

+

+

0001 0111

+

1101 0010

10101

10111

1000

suffers from glitches!!!
power inefficient

tree structure can reduce 
critical path and reduce 

glitching activity

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

Better: carry save adder (CSA)

• Remember: Full adder sums 3 inputs and 
produces 2 outputs (3:2 compressor)
– Essentially adding three 1-bit numbers

• N full adders in parallel  carry save adder
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n-bit CSA
result in redundant 

CSA format

constant delay:
don’t need to 
wait for carry 
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through

S4S3S2S1
C4C3C2C10

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris
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Carry save adder (CSA)

• Main idea: Don’t propagate carry signal 
until last possible stage

884

Z
4

Y
4

X
4

S
4

C
4

Z
3

Y
3

X
3

S
3

C
3

Z
2

Y
2

X
2

S
2

C
2

Z
1

Y
1

X
1

S
1

C
1

X
N...1

Y
N...1

Z
N...1

S
N...1

C
N...1

n-bit CSA

fast and small

0110

+0011

=0121

0101= S4S3S2S1
00100=C4C3C2C10

=01001 

result in redundant 
CSA format

Redundant CSA format

• Assume we compute 0110 + 0011

885

• Carry propagate 
adders compute:
0110

+0011

=1001

• Carry save adders 
compute:
0110

+0011

=0121

think non-binary, 
redundant 

number format

carry 
propagated

S4S3S2S1 =  0101

C4C3C2C10 = 00100

adding these 
numbers 
final result
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CSA-based m-operand adder

• Use m-2 CSA stages and keep results in 
carry save redundant form

• Final carry propagate adder computes result
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4-bit CSA

5-bit CSA

0001 0111 1101 0010

+

10110101_

01010_ 00011

 0001

 0111

+1101

 1011

0101_

X

Y

Z

S

C

 0101_

  1011

 +0010

 00011

01010_

X
Y

Z

S

C

 01010_

+ 00011

  10111

A

B

S

10111

1st stage: three 
4-bit numberscarry outputs 

left shifted by 1

2nd stage requires 
5-bit CSA

redundant 
CSA format

use CPA to 
compute final 

result

Example: 4-operand addition

887

X3 X2 X1 X0

Y3 Y2 Y1 Y0

+          Z3 Z2 Z1 Z0

S3 S2 S1 S0

C3 C2 C1 C0 00

+          W3 W2 W1 W0

S4 S3 S2 S1 S0

+    C4 C3 C2 C1 C0 00

= A6 A5 A4 A3 A2 A1 A0 

X Y Z

W

A

+

CSA

CSA
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Area and delay

• Area & delay of CSA-based m-operand adders

– A=(m-2)ACSA+ACPA

– T=(m-2)TCSA+TCPA

• Since some inputs are 0, FA can be replaced 

by HA circuits (reduces area)

• There are m-operand adders that are faster 

 use CPA tree (Wallace or Dadda trees)

– A=O(m*N+Nlog(N))

– T=O(log(m)+log(N))
888

Wallace tree: 7-operand example

889

CSA CSA

CSA

CSA

CSA

CPA

• Only 4 CSA blocks in 

series (compared to 7-

2=5 for regular array)

• T=O(log(m)+log(N))

• A=O(mN+NlogN)
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use 1 
CSA

use 1 CPA
use 1 CSA

use 1 
CSA

use 2 
CSAs

Example: Wallace tree generation*

890
*not easy: Parhami, “Computer Arithmetic,” 2nd Ed., Oxford Univ. Press, 2009

6-bit
7
 o

p
er

a
n
d
s

greedy procedure

CSA adders are very useful

• Can be used to shorten critical path and
reduce area in a large number of circuits

• Examples:

– Sequential accumulators

– Sequential adders

– Multi-input counters

– CORDICs

– Fast multipliers (!)
891

VLSI design tools are not 
very good at optimizing 

sequential circuits

free 
lunch!
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CSA adder summary and an example

• Can shorten critical path and reduce area

• CSA optimizations often done manually 
(exception: multipliers or m-operand adders)

892

CPA < CSA < <

Any idea how?

CPA

Multiplier circuits

Another key building block

893
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Why important?

• Multipliers are a key arithmetic block in a 
large number of applications:

– FIR/IIR filters

– Matrix-vector products

– Computer graphics (games!)

– Fast Fourier transforms (FFTs)

– Scientific computing

– Etc…

894

and they are rather 
slow, large, and 

energy inefficient…

Binary-valued multiplication

• Coefficients ai and bi are in {0,1}

895

essentially a 
big addition
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Multiplication as repeated additions

• Final result (product) is obtained through 
multi-operand addition

896

multiplicand

multiplier

partial

product

array

final result (=product)

N

N+M

M can be formed in parallel

number of 
output bits 

N+M

Example

• Produce M partial products of N-bit

• Sum these to produce M+N bit product

897

1 1 1 0
0 1 0 1

1 1 1 0
0 0 0 0

1 1 1 0

if multiplier 1 then
use multiplicand

0 0 0 0 if multiplier 0 then
not use multiplicand

0 1 1 00 1 0 0 add all partial products  
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Shift and add multiplication

• Right shift and add
– Partial products array rows are accumulated from 

top to bottom on an N-bit adder

– After each addition, right shift the accumulated 
partial product to align with next row to add

– T=O(N*Tadd) which is O(N2) for an RCA

• How to make it faster:
– Use faster adder

– Reduce # of partial products  Booth’s recoding

– Use carry save adders

898

Partial product generation

• In most cases, the partial product array has 
many zero rows that have no impact on result

899

A3 A2 A1 A0

Bj

PP3 PP2 PP1 PP0

partial 
products
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Booth’s recoding method

• Goal: Reduce number of generated PPs

• Example:

– Assume multiplier is 01111110

– Generates 6 non-zero PPs

– Recode multiplier to 10000010

– Recoded number has only 2 non-zero PPs

• Booth’s recoding method reduces the 
number of non-zero PPs by half

– Lower area and faster  but complicated 
900

1 indicates -1

The array multiplier
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Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

multiplicand

multiplier

partial 
product

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic


