ECE4740: Digital VLSI Design

Lecture 24: Carry save adder \& multipliers

A common problem in Homework 3

Switching activity and power

Recap: dynamic power consumption

- Dynamic power consumption dominated by charging/discharging capacitors

- Switching activity α_{k} depends on logic

Dynamic power consumption

- Static component
- only dependent on topology of logic network
- Dynamic component
- dependent on dynamic behavior \rightarrow glitching
contamination
delay
delay

Probabilistic model

- Depends on logic function
- Assume
- N -input logic gate (2^{N} outputs)
- inputs are i.i.d. uniformly distributed
- Transition probability is

A	B	$\operatorname{not}(A+B)$
0	0	1
0	1	0
1	0	0
1	1	0

Probabilistic model (cont'd)

A	B	$\operatorname{not}(A+B)$
0	0	1
0	1	0
1	0	0
1	1	0

NOR2 gate with iid inputs

$$
\alpha=2 \frac{N_{0}}{2^{N}} \frac{N_{1}}{2^{N}}=0.375
$$

A	B	$\operatorname{XOR}(A, B)$
0	0	0
0	1	1
1	0	1
1	1	0

XOR gate with iid inputs

$$
\alpha=2 \frac{N_{0}}{2^{N}} \frac{N_{1}}{2^{N}}=0.5
$$

- Only clock achieves $>50 \%$ toggle rate

Non-uniform input statistics

- $p_{a}=$ probability that input A is 1
- $p_{b}=$ probability that input B is 1

	switching activity
AND	$2^{*}\left(1-p_{a}{ }^{*} p_{b}\right) p_{a}^{*} p_{\mathrm{b}}$
OR	$2^{*}\left(1-p_{\mathrm{a}}\right)^{*}\left(1-p_{\mathrm{b}}\right)^{*}\left[1-\left(1-p_{\mathrm{a}}\right)^{*}\left(1-p_{\mathrm{b}}\right)\right]$
XOR	$2 *\left[1-\left(p_{\mathrm{a}}+p_{\mathrm{b}}-2^{*} \mathrm{p}_{\mathrm{a}}{ }^{*} p_{\mathrm{b}}\right)\right]^{*}\left(p_{\mathrm{a}}+p_{\mathrm{b}}-2^{*} \mathrm{p}_{\mathrm{a}} * p_{\mathrm{b}}\right)$

- Complicated \& not very useful in practice

No need for a general formula!

- You only need probabilities p_{a}, p_{b}, and p_{c} of output being 1 - Assume they are independent across inputs and time
- Compute probability of $f(A, B, C)=1$
$-P 1=\left(1-p_{a}\right) * p_{b}{ }^{*}\left(1-p_{c}\right)+p_{a} * p_{b}{ }^{*} p_{c}$

A	B	C	$f(A, B, C)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$-f(A, B, C)=0 \quad \rightarrow \quad P 0=1-P 1$

- Compute transition probability

Switching probabilities?

- Consider two time steps

- How likely is a transition going to happen?
$\left.\begin{array}{l}-\operatorname{Pr}[0 \rightarrow 1]=P 0 * P 1 \\ -\operatorname{Pr}[1 \rightarrow 0]=P 1 * P 0\end{array}\right\} \quad \alpha=2 * P 1 * P 0$

Inter-signal correlations

- Switching activity difficult to estimate as there is correlation across space and time

- One has to use conditional probabilities
- Timing does matter \rightarrow glitches

Power reduction via restructuring

- Logic restructuring

- Chain implementation: lower total switching activity than tree (for i.i.d. uniform inputs)
- Insert signals with higher transition rate at the end of the chain

Simulative static activity analysis

- Generate a series of representative inputs
- Simulate and record the logic activity
- Use these activities along with the node capacitances to estimate the power

$$
P_{s t a t}=V_{D D}^{2} f_{c l k} \sum_{k}^{K} \frac{\alpha_{k}}{2} C_{k}
$$

- There are tools that help you! YAY!

Dynamic component: glitches

- In this (silly) example: output should be 1
- Propagation delay of inverter causes glitch
- Extraction of glitching activity requires accurate timing models and CAD tools!

Reduce glitching: balance delays

- Glitching (or dynamic hazards) due to mismatch in path length of logic network

- Remember the chain vs. tree logic
- contradicting design goals...

Optimization for power not easy

- Dynamic power depends on
- logic topology, gate timing, input statistics
- There is no standard approach:
- implement logic with as few gates as possible
- reduce voltage if you can
- optimize for speed and reduce voltage
- don't oversize your gates (just right!)
- reduce toggle \& glitch activities
- balance delays (avoid glitches)
- keep capacitances low (wires etc.)

Faster multi-operand additions

Carry save adders

Multi-operand addition

- Add four N-bit numbers: Sum $=A+B+C+D$
- Straightforward solution: Use 3 N -bit carry propagate adders \rightarrow large and slow

Better: carry save adder (CSA)

- Remember: Full adder sums 3 inputs and produces 2 outputs (3:2 compressor)
- Essentially adding three 1-bit numbers
- N full adders in parallel \rightarrow carry save adder

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

Carry save adder (CSA)

- Main idea: Don't propagate carry signal until last possible stage
fast and small

Redundant CSA format

- Assume we compute $0110+0011$
- Carry propagate adders compute:

- Carry save adders compute:

$$
0110
$$

$+0011 \quad$ think non-binary,
redundant
number format

$\mathrm{S}_{4} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1}=0$
$\mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{O}=001001$adding these numbers \rightarrow final result

CSA-based m-operand adder

- Use m-2 CSA stages and keep results in carry save redundant form
- Final carry propagate adder computes result

Example: 4-operand addition

Area and delay

- Area \& delay of CSA-based m-operand adders
$-\mathrm{A}=(\mathrm{m}-2) \mathrm{A}_{\text {CSA }}+\mathrm{A}_{\text {CPA }}$
$-T=(m-2) T_{C S A}+T_{\text {CPA }}$
- Since some inputs are 0, FA can be replaced by HA circuits (reduces area)
- There are m-operand adders that are faster \rightarrow use CPA tree (Wallace or Dadda trees)
- A=O(m*N+Nlog(N))
$-\mathrm{T}=\mathrm{O}(\log (\mathrm{m})+\log (\mathrm{N}))$

Wallace tree: 7-operand example

Example: Wallace tree generation*

 6-bit

CSA adders are very useful

- Can be used to shorten critical path and reduce area in a large number of circuits
- Examples:
- Sequential accumulators
- Sequential adders
- Multi-input counters
- CORDICs
- Fast multipliers (!)

CSA adder summary and an example

- Can shorten critical path and reduce area
- CSA optimizations often done manually (exception: multipliers or m-operand adders)

Any idea how?

Another key building block

Multiplier circuits

Why important?

- Multipliers are a key arithmetic block in a large number of applications:
- FIR/IIR filters
- Matrix-vector products
- Computer graphics (games!)
- Fast Fourier transforms (FFTs)
- Scientific computing
- Etc...

Binary-valued multiplication

$$
A=\sum_{i=0}^{M-1} a_{i} 2^{i}
$$

$$
B=\sum_{j=0}^{N-1} b_{j} 2^{j}
$$

- Coefficients a_{i} and b_{i} are in $\{0,1\}$

Multiplication as repeated additions

- Final result (product) is obtained through multi-operand addition

Example

if multiplier 1 then use multiplicand
if multiplier 0 then
not use multiplicand
add all partial products

- Produce M partial products of N -bit
- Sum these to produce M+N bit product

Shift and add multiplication

- Right shift and add
- Partial products array rows are accumulated from top to bottom on an N -bit adder
- After each addition, right shift the accumulated partial product to align with next row to add
$-\mathrm{T}=\mathrm{O}\left(\mathrm{N}^{*} \mathrm{~T}_{\text {add }}\right)$ which is $\mathrm{O}\left(\mathrm{N}^{2}\right)$ for an RCA
- How to make it faster:
- Use faster adder
- Reduce \# of partial products \rightarrow Booth's recoding
- Use carry save adders

Partial product generation

- In most cases, the partial product array has many zero rows that have no impact on result

Booth's recoding method

- Goal: Reduce number of generated PPs
- Example:
- Assume multiplier is 01111110
- Generates 6 non-zero PPs
- Recode multiplier to 10000010 1 indicates -1
- Recoded number has only 2 non-zero PPs
- Booth's recoding method reduces the number of non-zero PPs by half
- Lower area and faster \rightarrow but complicated $*$

