
6/8/2018

1

ECE4740:
Digital VLSI Design

Lecture 24: Carry save adder & multipliers

866

Switching activity and power

A common problem in Homework 3

867

6/8/2018

2

Recap: dynamic power consumption

• Dynamic power consumption dominated by
charging/discharging capacitors

• Switching activity depends on logic

868

clock
frequency

node/gate
index

switching activity
(per clock cycle)

load capacitance
for node k

Dynamic power consumption

• Static component

– only dependent on
topology of logic network

• Dynamic component

– dependent on dynamic
behavior glitching

869

A

B

Out

peparation evaluation

A

B

Out

glitch

contamination
delay

6/8/2018

3

Probabilistic model

• Depends on logic function

• Assume

– N-input logic gate (2N outputs)

– inputs are i.i.d. uniformly distributed

• Transition probability is

870

#of zero entries
in truth table

#of one entries
in truth table

A B not(A+B)

0 0 1

0 1 0

1 0 0

1 1 0

Probabilistic model (cont’d)

• Only clock achieves >50% toggle rate
871

A B not(A+B)

0 0 1

0 1 0

1 0 0

1 1 0

NOR2 gate with iid inputs

A B XOR(A,B)

0 0 0

0 1 1

1 0 1

1 1 0

XOR gate with iid inputs

6/8/2018

4

Non-uniform input statistics

• pa = probability that input A is 1

• pb = probability that input B is 1

• Complicated & not very useful in practice

872

switching activity

AND 2*(1-pa*pb)pa*pb

OR 2*(1-pa)*(1-pb)*[1-(1-pa)*(1-pb)]

XOR 2*[1-(pa+pb-2*pa*pb)]*(pa+pb-2*pa*pb)

No need for a general formula!

• You only need probabilities pa,
pb, and pc of output being 1

– Assume they are independent
across inputs and time

• Compute probability of
f(A,B,C)=1

– P1=(1-pa)*pb*(1-pc)+pa*pb*pc

– f(A,B,C)=0 P0=1-P1

• Compute transition probability
873

A B C f(A,B,C)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

6/8/2018

5

Switching probabilities?

• Consider two time steps

• How likely is a transition going to happen?

– Pr[01] = P0*P1

– Pr[10] = P1*P0

874

0

1 1

0

time1 time2

α = 2*P1*P0

only correct if
data is

independent
over time

Inter-signal correlations

• Switching activity difficult to estimate as
there is correlation across space and time

• One has to use conditional probabilities

• Timing does matter glitches

875

B

A

Z

X

reconvergent fan-out

6/8/2018

6

Power reduction via restructuring

• Logic restructuring

• Chain implementation: lower total switching
activity than tree (for i.i.d. uniform inputs)

• Insert signals with higher transition rate at
the end of the chain

876

A

B
C

D F

A

B

C

D Z

F

W
X

YPa=0.5

Pb=0.5

2*(1-0.25)*0.25 = 6/16

14/64

30/256

6/16

6/16

30/256

Pc=0.5
Pd=0.5

Pa=0.5

Pb=0.5

Pc=0.5

Pd=0.5

switching
activity

Simulative static activity analysis

• Generate a series of representative inputs

• Simulate and record the logic activity

• Use these activities along with the node
capacitances to estimate the power

• There are tools that help you! YAY!

877

6/8/2018

7

Dynamic component: glitches

• In this (silly) example: output should be 1

• Propagation delay of inverter causes glitch

• Extraction of glitching activity requires
accurate timing models and CAD tools!

878

A

Z

A
X
Z

X
glitch

Reduce glitching: balance delays

• Glitching (or dynamic hazards) due to
mismatch in path length of logic network

• Remember the chain vs. tree logic
– contradicting design goals…

879

F1

F2

F3

0

0

0

0

1

2

F1

F2

F3

0

0

0

0

1

1

6/8/2018

8

Optimization for power not easy

• Dynamic power depends on
– logic topology, gate timing, input statistics

• There is no standard approach:
– implement logic with as few gates as possible

– reduce voltage if you can

– optimize for speed and reduce voltage

– don’t oversize your gates (just right!)

– reduce toggle & glitch activities

– balance delays (avoid glitches)

– keep capacitances low (wires etc.)

880

Carry save adders

Faster multi-operand additions

881

6/8/2018

9

Multi-operand addition

• Add four N-bit numbers: Sum = A+B+C+D

• Straightforward solution: Use 3 N-bit carry
propagate adders large and slow

882

+

+

0001 0111

+

1101 0010

10101

10111

1000

suffers from glitches!!!
power inefficient

tree structure can reduce
critical path and reduce

glitching activity

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

Better: carry save adder (CSA)

• Remember: Full adder sums 3 inputs and
produces 2 outputs (3:2 compressor)
– Essentially adding three 1-bit numbers

• N full adders in parallel carry save adder

883

Z
4

Y
4

X
4

S
4

C
4

Z
3

Y
3

X
3

S
3

C
3

Z
2

Y
2

X
2

S
2

C
2

Z
1

Y
1

X
1

S
1

C
1

X
N...1

Y
N...1

Z
N...1

S
N...1

C
N...1

n-bit CSA
result in redundant

CSA format

constant delay:
don’t need to
wait for carry
to propagate

through

S4S3S2S1
C4C3C2C10

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

6/8/2018

10

Carry save adder (CSA)

• Main idea: Don’t propagate carry signal
until last possible stage

884

Z
4

Y
4

X
4

S
4

C
4

Z
3

Y
3

X
3

S
3

C
3

Z
2

Y
2

X
2

S
2

C
2

Z
1

Y
1

X
1

S
1

C
1

X
N...1

Y
N...1

Z
N...1

S
N...1

C
N...1

n-bit CSA

fast and small

0110

+0011

=0121

0101= S4S3S2S1
00100=C4C3C2C10

=01001

result in redundant
CSA format

Redundant CSA format

• Assume we compute 0110 + 0011

885

• Carry propagate
adders compute:
0110

+0011

=1001

• Carry save adders
compute:
0110

+0011

=0121

think non-binary,
redundant

number format

carry
propagated

S4S3S2S1 = 0101

C4C3C2C10 = 00100

adding these
numbers
final result

6/8/2018

11

CSA-based m-operand adder

• Use m-2 CSA stages and keep results in
carry save redundant form

• Final carry propagate adder computes result

886

4-bit CSA

5-bit CSA

0001 0111 1101 0010

+

10110101_

01010_ 00011

 0001

 0111

+1101

 1011

0101_

X

Y

Z

S

C

 0101_

 1011

 +0010

 00011

01010_

X
Y

Z

S

C

 01010_

+ 00011

 10111

A

B

S

10111

1st stage: three
4-bit numberscarry outputs

left shifted by 1

2nd stage requires
5-bit CSA

redundant
CSA format

use CPA to
compute final

result

Example: 4-operand addition

887

X3 X2 X1 X0

Y3 Y2 Y1 Y0

+ Z3 Z2 Z1 Z0

S3 S2 S1 S0

C3 C2 C1 C0 00

+ W3 W2 W1 W0

S4 S3 S2 S1 S0

+ C4 C3 C2 C1 C0 00

= A6 A5 A4 A3 A2 A1 A0

X Y Z

W

A

+

CSA

CSA

6/8/2018

12

Area and delay

• Area & delay of CSA-based m-operand adders

– A=(m-2)ACSA+ACPA

– T=(m-2)TCSA+TCPA

• Since some inputs are 0, FA can be replaced

by HA circuits (reduces area)

• There are m-operand adders that are faster

 use CPA tree (Wallace or Dadda trees)

– A=O(m*N+Nlog(N))

– T=O(log(m)+log(N))
888

Wallace tree: 7-operand example

889

CSA CSA

CSA

CSA

CSA

CPA

• Only 4 CSA blocks in

series (compared to 7-

2=5 for regular array)

• T=O(log(m)+log(N))

• A=O(mN+NlogN)

6/8/2018

13

use 1
CSA

use 1 CPA
use 1 CSA

use 1
CSA

use 2
CSAs

Example: Wallace tree generation*

890
*not easy: Parhami, “Computer Arithmetic,” 2nd Ed., Oxford Univ. Press, 2009

6-bit
7
 o

p
er

a
n
d
s

greedy procedure

CSA adders are very useful

• Can be used to shorten critical path and
reduce area in a large number of circuits

• Examples:

– Sequential accumulators

– Sequential adders

– Multi-input counters

– CORDICs

– Fast multipliers (!)
891

VLSI design tools are not
very good at optimizing

sequential circuits

free
lunch!

6/8/2018

14

CSA adder summary and an example

• Can shorten critical path and reduce area

• CSA optimizations often done manually
(exception: multipliers or m-operand adders)

892

CPA < CSA < <

Any idea how?

CPA

Multiplier circuits

Another key building block

893

6/8/2018

15

Why important?

• Multipliers are a key arithmetic block in a
large number of applications:

– FIR/IIR filters

– Matrix-vector products

– Computer graphics (games!)

– Fast Fourier transforms (FFTs)

– Scientific computing

– Etc…

894

and they are rather
slow, large, and

energy inefficient…

Binary-valued multiplication

• Coefficients ai and bi are in {0,1}

895

essentially a
big addition

6/8/2018

16

Multiplication as repeated additions

• Final result (product) is obtained through
multi-operand addition

896

multiplicand

multiplier

partial

product

array

final result (=product)

N

N+M

M can be formed in parallel

number of
output bits

N+M

Example

• Produce M partial products of N-bit

• Sum these to produce M+N bit product

897

1 1 1 0
0 1 0 1

1 1 1 0
0 0 0 0

1 1 1 0

if multiplier 1 then
use multiplicand

0 0 0 0 if multiplier 0 then
not use multiplicand

0 1 1 00 1 0 0 add all partial products

6/8/2018

17

Shift and add multiplication

• Right shift and add
– Partial products array rows are accumulated from

top to bottom on an N-bit adder

– After each addition, right shift the accumulated
partial product to align with next row to add

– T=O(N*Tadd) which is O(N2) for an RCA

• How to make it faster:
– Use faster adder

– Reduce # of partial products Booth’s recoding

– Use carry save adders

898

Partial product generation

• In most cases, the partial product array has
many zero rows that have no impact on result

899

A3 A2 A1 A0

Bj

PP3 PP2 PP1 PP0

partial
products

6/8/2018

18

Booth’s recoding method

• Goal: Reduce number of generated PPs

• Example:

– Assume multiplier is 01111110

– Generates 6 non-zero PPs

– Recode multiplier to 10000010

– Recoded number has only 2 non-zero PPs

• Booth’s recoding method reduces the
number of non-zero PPs by half

– Lower area and faster but complicated
900

1 indicates -1

The array multiplier

901

Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

multiplicand

multiplier

partial
product

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

