ECE4740: Digital VLSI Design

Lecture 23: Arithmetic \& logic circuits

Important basic functions
Comparators

Different comparator/detector types

- Comparators are used in virtually all digital VLSI designs, processors, GPUs, etc.
- Different types:
- 0's detector: $A=[0000$ 0000]
- 1's detector: $\mathrm{A}=\left[\begin{array}{lll}1111 & 1111\end{array}\right]$

- Equality comparator: $\mathrm{A}=\mathrm{B}$
- Magnitude comparator: $\mathrm{A}<\mathrm{B}$ or $\mathrm{A}<=\mathrm{B}$

1's and 0's detectors

- All 1's detector:

- Tree structure: $\mathrm{T}=\mathrm{O}(\log \mathrm{N}), \mathrm{A}=\mathrm{O}\left(\mathrm{N}^{*} \log \mathrm{~N}\right)$

1's and 0's detectors (cont'd)

- All 0's detector:

- Tree structure: $\mathrm{T}=\mathrm{O}(\log \mathrm{N}), \mathrm{A}=\mathrm{O}\left(\mathrm{N}^{*} \log \mathrm{~N}\right)$

Equality comparator

- Check if individual bits are equal
- XNOR = equality gate
- 1's detector on bitwise checks

A	B	$\operatorname{XNOR}(A, B)$
0	0	1
0	1	0
1	0	0
1	1	1

Magnitude comparator

- More complicated than the detectors before
- Idea: compute $\mathrm{B}-\mathrm{A}$ and look at sign
- If $B-A=>0$ then $B=>A$ and $B<A$ otherwise
- Two's complement identity: $B-A=B+!A+1$
- Requires a carry propagate adder!

Recap: signed numbers

- Most common: 2's complement number format
- Use B bit to represent every integer in the range:

$$
-2^{(B-1)} \text { to } 2^{(B-1)-1}
$$

- Addition, subtraction, and multiplication are very simple!

Binary	Int.
000	0
001	1
010	2
011	3
100	-4
101	-3
110	-2
111	-1

Two's complement numbers

Advantages of 2's complement

- Addition can be carried out with standard adder circuits (ripple, Kogge-Stone, etc.)
- Multiplication can be carried out with standard multiplier circuits
- Sign can easily be extracted (=MSB)
- Negating requires only INV+increment*
- Fixed-point numbers!

Other number formats

- Two's complement has an asymmetric range but addition/subtraction is very easy
- Alternative: sign magnitude
- Stores sign and magnitude separately
- Symmetric range
- Two zeros... :
- Addition, subtraction, and multiplication requires more

Binary	Int.
000	0
001	1
010	2
011	3
100	-0
101	-1
110	-2
111	-3

Sign-magnitude can reduce power

- Example: Audio/speech signals
- Lower switching activity!

taken from Kaeslin, 2008

Signed vs. unsigned comparison

- Magnitude comparison harder for signed numbers:
- $\mathrm{C}=$ carry out
$-\mathrm{Z}=$ zero (all bits of B-A are 0)
$-\mathrm{N}=$ negative (MSB of result)
$-\mathrm{V}=$ overflow (input had

Condition	Unsigned	Signed
$\mathrm{A}=\mathrm{B}$	Z	Z
$\mathrm{A}!=\mathrm{B}$	$!\mathrm{Z}$	$!\mathrm{Z}$
$\mathrm{A}<\mathrm{B}$	$\mathrm{C}^{*}!\mathrm{Z}$	$!\mathrm{S}^{*}!\mathrm{Z}$
$\mathrm{A}>\mathrm{B}$	C	S
$\mathrm{A}<=\mathrm{B}$	C	$!\mathrm{S}$
$\mathrm{A}>=\mathrm{B}$	$!\mathrm{C}+\mathrm{Z}$	$\mathrm{S}+\mathrm{Z}$

$-\mathrm{S}=$ sign of result XOR(N,V)

Useful arithmetic and logic circuits

Shifters and rotators

Logical and arithmetic shifters

- Shifters shift bits to right or left
- Left shift (can be multiplication by 2)
- Right shift (can be division by 2)
- Used in floating-point units or CORDICs (coordinate rotation digital computers)

Inserts/extends sign bit

- Logical shift right: 1011 LSR 1 = 0101
- Logical shift left:

1011 LSL 1 = 0110

- Arithmetic shift/right: 1011 ASR $1=1101$
- Arithmetic shift left: 1011 ASL 1 = 0110

Rotators

- Shifts number to left or right and fills with lost bits on other side
- Used for cryptography, encoding and decoding circuits, number conversion, etc.
- Rotate right: 1011 ROR $1=101$
- Rotate left: 1001 ROL $1=0011$

Programmable shifters/rotators

- Fixed shifters/rotators are just wires
- Programmable shifters have multiple modes
control in $=\left\{\begin{array}{l}\text { shift amount } \\ \text { shift direction } \\ \text { shift type (logical, } \\ \text { arithmetic, circular) }\end{array}\right.$

Programmable binary shifter: nop

Programmable binary shifter: right

Programmable binary shifter: left

4-bit arithmetic barrel shifter

4-bit arithmetic barrel shifter (cont'd)

Barrel shifter layout

- Width $\approx 2^{*} \mathrm{p}_{\mathrm{m}}$ *N, $\mathrm{N}=$ max. shift amount, $\mathrm{p}_{\mathrm{m}}=$ metal pitch
- Delay $1 F E T+N$ diffusion capacitances+1INV

Logarithmic barrel shifter

Logarithmic barrel shifter circuit

Logarithmic barrel shifter layout

- Width $\approx \mathrm{p}_{\mathrm{m}}\left(2^{\mathrm{K}}+2 \mathrm{~K}-1\right), \mathrm{K}=\log _{2}(\mathrm{~N})$
- Delay $=$ K-FETs +2 diffusion capacitances (+1 INV)

Logarithmic barrel rotator

- Very similar to shifter

right shift only

right and left shift
- Left rotations are right rotations by N-k bit

(Shifter/rotator comparison)

		Barrel		Logarithmic	
		K	Width	Speed	Width
	$2 \mathrm{p}_{\mathrm{m}}$	$1+\mathrm{N}$ diffs	$\mathrm{p}_{\mathrm{m}}\left(2^{\mathrm{K}}+2 \mathrm{~K}-1\right)$	$\mathrm{K}+2$ diffs	
8	3	$16 \mathrm{p}_{\mathrm{m}}$	$1+8$	$13 \mathrm{p}_{\mathrm{m}}$	$3+2$
16	4	$32 \mathrm{p}_{\mathrm{m}}$	$1+16$	$23 \mathrm{p}_{\mathrm{m}}$	$4+2$
32	5	$64 \mathrm{p}_{\mathrm{m}}$	$1+32$	$41 \mathrm{p}_{\mathrm{m}}$	$5+2$
64	6	$128 \mathrm{p}_{\mathrm{m}}$	$1+64$	$75 \mathrm{p}_{\mathrm{m}}$	$6+2$

- Barrel better for small (faster, not much bigger)
- Logarithmic shifters always smaller and better for large shifters, but be careful with PTs in series!

Build trees!
Large multiplexers

Remember the TG 2-in MUX?

$\mathrm{F}=!\left(\left(\mathrm{in}_{1} \& \mathrm{~S}\right) \mid\left(\mathrm{in}_{2} \&!\mathrm{S}\right)\right)$

Building large MUXs

- Signal $\left[S_{0} S_{1}\right]$ automatically encodes input to pass to output
- Delay grows logarithmically: $\mathrm{T}=\mathrm{O}(\log \mathrm{N})$
- Area: $\mathrm{A}=\mathrm{Nlog}_{2}(\mathrm{~N})$

Simpler circuit: MUX4 example

Not only used in multipliers

Multi-operand addition

Multi-operand addition

- Add four N -bit numbers: $\mathrm{Sum}=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$
- Straightforward solution: Use 3 N-bit carry propagate adders \rightarrow large and slow

Better: carry save adder (CSA)

- Remember: Full adder sums 3 inputs and produces 2 outputs (3:2 compressor)
- Essentially adding three 1-bit numbers
- N full adders in parallel \rightarrow carry save adder

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

Redundant CSA format

- Assume we compute $0110+0011$
- Carry propagate adders compute:
0110
+0011
$=\widehat{1001}$
- Carry save adders compute:

$$
0110
$$

$$
+0011 \quad \text { think non-binary, } \begin{gathered}
\text { redundant }
\end{gathered}
$$

$$
=0121
$$

number format

adding these numbers \rightarrow final result

