
6/8/2018

1

ECE4740:
Digital VLSI Design

Lecture 23: Arithmetic & logic circuits

829

Comparators

Important basic functions

830

6/8/2018

2

Different comparator/detector types

• Comparators are used in virtually all digital
VLSI designs, processors, GPUs, etc.

• Different types:

– 0’s detector: A=[0000 0000]

– 1’s detector: A=[1111 1111]

– Equality comparator: A=B

– Magnitude comparator: A<B or A<=B

831
Image taken from: http://littleandersensenglish.blogspot.com/2018/01/unit-4-comparative-and-superlative.html

1’s and 0’s detectors

832

• All 1’s detector:

• Tree structure: T=O(logN), A=O(N*logN)

A
0

A
1

A
2

A
3

A
4

A
5

A6

A
7

allones

one big AND4,
inputs are
inverted

equality check
with AND2

(NAND2+INV)

Image adapted from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

6/8/2018

3

1’s and 0’s detectors (cont’d)

833

• All 0’s detector:

• Tree structure: T=O(logN), A=O(N*logN)

AND2 to check
whether both
inputs are 1

0 equality check
with NAND2

A
0

A
1

A
2

A
3

allzeros

Image adapted from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

Equality comparator

• Check if individual bits are equal

– XNOR = equality gate

– 1’s detector on bitwise checks

834

A[0]
B[0]

A = B

A[1]
B[1]

A[2]
B[2]

A[3]
B[3]

A B XNOR(A,B)

0 0 1

0 1 0

1 0 0

1 1 1

N-input NAND to
check whether all

inputs are 1

Image adapted from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

6/8/2018

4

Magnitude comparator

• More complicated than the detectors before

• Idea: compute B-A and look at sign

– If B-A=>0 then B=>A and B<A otherwise

835

• Two’s complement
identity: B-A=B+!A+1

• Requires a carry
propagate adder!

A
0

B
0

A
1

B
1

A
2

B2

A
3

B
3

A = B
Z

C

A B

N A B

1

carry is
sign bit

also checks
for equality

Image adapted from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

Recap: signed numbers

• Most common: 2’s
complement number format

• Use B bit to represent every
integer in the range:

–2(B-1) to 2(B-1)-1

• Addition, subtraction, and
multiplication are very simple!

836

Binary Int.

000 0

001 1

010 2

011 3

100 -4

101 -3

110 -2

111 -1

MSB indicates
sign of number

6/8/2018

5

Two’s complement numbers

837

Binary Int.

000 0

001 1

010 2

011 3

100 -4

101 -3

110 -2

111 -1

000

001

010

011

100

101

110

111 0

1

2

3

-4

-3

-2

-1

sign flip –A
implemented as !A+1

addition happens on
a ring (algebra)

Advantages of 2’s complement

• Addition can be carried out with standard

adder circuits (ripple, Kogge-Stone, etc.)

• Multiplication can be carried out with

standard multiplier circuits

• Sign can easily be extracted (=MSB)

• Negating requires only INV+increment*

• Fixed-point numbers!

838*increment can often be done with carry in at LSB

6/8/2018

6

Other number formats

• Two’s complement has an asymmetric
range but addition/subtraction is very easy

• Alternative: sign magnitude

839

Binary Int.

000 0

001 1

010 2

011 3

100 -0

101 -1

110 -2

111 -3

– Stores sign and magnitude
separately

– Symmetric range

– Two zeros… 

– Addition, subtraction, and
multiplication requires more
complex VLSI circuits

Sign-magnitude can reduce power

• Example: Audio/speech signals

• Lower switching activity!

840

taken from Kaeslin, 2008

t

pdf

6/8/2018

7

Signed vs. unsigned comparison

• Magnitude comparison
harder for signed
numbers:

– C = carry out

– Z = zero (all bits of
B-A are 0)

– N = negative (MSB of
result)

– V = overflow (input had
different signs)

– S = sign of result
XOR(N,V) 841

Condition Unsigned Signed

A=B Z Z

A!=B !Z !Z

A<B C*!Z !S*!Z

A>B !C S

A<=B C !S

A>=B !C+Z S+Z

Shifters and rotators

Useful arithmetic and logic circuits

842

6/8/2018

8

Logical and arithmetic shifters

• Shifters shift bits to right or left

– Left shift (can be multiplication by 2)

– Right shift (can be division by 2)

• Used in floating-point units or CORDICs
(coordinate rotation digital computers)

843

• Logical shift right:
1011 LSR 1 = 0101

• Logical shift left:
1011 LSL 1 = 0110

• Arithmetic shift right:
1011 ASR 1 = 1101

• Arithmetic shift left:
1011 ASL 1 = 0110

Inserts/extends sign bit

Rotators

• Shifts number to left or right and fills with
lost bits on other side

• Used for cryptography, encoding and
decoding circuits, number conversion, etc.

844

• Rotate right: 1011 ROR 1 = 1101

• Rotate left: 1001 ROL 1 = 0011

6/8/2018

9

Programmable shifters/rotators

• Fixed shifters/rotators are just wires

• Programmable shifters have multiple modes

845

control in =

shift amount

shift direction

shift type (logical,

arithmetic, circular)

complexity prohibitive
if implemented with
random logic gates

Programmable binary shifter: nop

846

rgt nop left

Ai

Ai-1
Bi-1

Bi

Ai Ai-1 rgt nop left Bi Bi-1

A1 A0 0 1 0 A1 A0

A1 A0 1 0 0 0 A1

A1 A0 0 0 1 A0 0

6/8/2018

10

Programmable binary shifter: right

847

rgt nop left

Ai

Ai-1
Bi-1

Bi

Ai Ai-1 rgt nop left Bi Bi-1

A1 A0 0 1 0 A1 A0

A1 A0 1 0 0 0 A1

A1 A0 0 0 1 A0 0

for arithmetic right shift,
we just copy the MSB!

Programmable binary shifter: left

848

rgt nop left

Ai

Ai-1
Bi-1

Bi

Ai Ai-1 rgt nop left Bi Bi-1

A1 A0 0 1 0 A1 A0

A1 A0 1 0 0 0 A1

A1 A0 0 0 1 A0 0

for LSB, we
just insert a 0

6/8/2018

11

4-bit arithmetic barrel shifter

• Does sign-bit
extension

• Very regular
structure

• Area heavily
affected by
wiring

849

A0

A1

A2

A3

B0

B1

B2

B3

sh1

sh2

sh3

sh0 sh1 sh2 sh3

4-bit arithmetic barrel shifter (cont’d)

• How much
is the output
voltage
drop?

• Needs
buffers at
each
outputs

850

A0

A1

A2

A3

B0

B1

B2

B3

sh1

sh2

sh3

sh0 sh1 sh2 sh3

6/8/2018

12

Barrel shifter layout

• Width�2*pm*N, N=max. shift amount, pm = metal pitch

• Delay�1FET + N diffusion capacitances+1INV

851

Buffer

Sh3Sh2Sh1Sh0

A
3

A
2

A
1

A 0

Image taken from: An Interconnect-Centric Approach to Cyclic Shifter Design David M. Harris Harvey Mudd College.

Logarithmic barrel shifter

852

A3

A2

A1

A0 B0

B1

B2

B3

sh1 sh2 sh3

total shift is
composed into
powers of two

A4 B4

Image taken from: An Interconnect-Centric Approach to Cyclic Shifter Design David M. Harris Harvey Mudd College.

6/8/2018

13

Logarithmic barrel shifter circuit

853

A3

A2

A1

A0

!sh1sh1 !sh2sh2 !sh3sh3

B0

B1

B2

B3

Logarithmic barrel shifter circuit

854

A3

A2

A1

A0

!sh1sh1 !sh2sh2 !sh3sh3

B0

B1

B2

B3

control signals
directly obtained

from shift amount

6/8/2018

14

Logarithmic barrel shifter layout

855

A0

B3

B2

B1

B0

A1

A2

A3

1 2 4

• Width�pm(2K+2K-1), K=log2(N)

• Delay�K-FETs + 2 diffusion capacitances (+1 INV)

Image taken from: An Interconnect-Centric Approach to Cyclic Shifter Design David M. Harris Harvey Mudd College.

Logarithmic barrel rotator

• Very similar to shifter

• Left rotations are right rotations by N-k bit

856

right shift only right and left shift

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

6/8/2018

15

(Shifter/rotator comparison)

• Barrel better for small (faster, not much bigger)

• Logarithmic shifters always smaller and better for
large shifters, but be careful with PTs in series!

857

N K

Barrel Logarithmic

Width Speed Width Speed

2 N pm 1 + N diffs pm(2K+2K-1) K + 2 diffs

8 3 16 pm 1 + 8 13 pm 3 + 2

16 4 32 pm 1 + 16 23 pm 4 + 2

32 5 64 pm 1 + 32 41 pm 5 + 2

64 6 128 pm 1 + 64 75 pm 6 + 2

Large multiplexers

Build trees!

858

6/8/2018

16

Remember the TG 2-in MUX?

859

GND

VDD

In1 In2S S

S S

S

S

!S

in2

in1

F

F

F = !((in1 & S) | (in2 & !S))

INVnote that this
one is inverting

Building large MUXs

• Signal [S0 S1]
automatically
encodes input to
pass to output

• Delay grows
logarithmically:
T=O(logN)

• Area: A=Nlog2(N)

860

A0

S0

A1

M
U

X
2

A2

A3

S1

out

M
U

X
2

M
U

X
2

6/8/2018

17

Simpler circuit: MUX4 example

861

A0

A1

A2

A3

!S0S0 !S1S1

out

after 2-4 stages
buffers need to

be inserted

transmission gates
can also be used

signal [S0 S1]
encodes output

Multi-operand addition

Not only used in multipliers

862

6/8/2018

18

Multi-operand addition

• Add four N-bit numbers: Sum = A+B+C+D

• Straightforward solution: Use 3 N-bit carry
propagate adders  large and slow

863

+

+

0001 0111

+

1101 0010

10101

10111

1000

suffers from glitches!!!
power inefficient

tree structure can reduce
critical path and reduce

glitching activity

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

Better: carry save adder (CSA)

• Remember: Full adder sums 3 inputs and
produces 2 outputs (3:2 compressor)
– Essentially adding three 1-bit numbers

• N full adders in parallel  carry save adder

864

Z
4

Y
4

X
4

S
4

C
4

Z
3

Y
3

X
3

S
3

C
3

Z
2

Y
2

X
2

S
2

C
2

Z
1

Y
1

X
1

S
1

C
1

X
N...1

Y
N...1

Z
N...1

S
N...1

C
N...1

n-bit CSA
result in redundant

CSA format

constant delay:
don’t need to
wait for carry
to propagate

through

S
3
S
2
S
1
S
0

C
3
C
2
C
2
C
0
0

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

6/8/2018

19

Redundant CSA format

• Assume we compute 0110 + 0011

865

• Carry propagate
adders compute:
0110

+0011

=1001

• Carry save adders
compute:
0110

+0011

=0121

think non-binary,
redundant

number format

carry
propagated

S
3
S
2
S
1
S
0
= 0101

C
3
C
2
C
2
C
0
0 = 00100

adding these
numbers 
final result

