ECE4740:
Digital VLSI Design

Lecture 23: Arithmetic & logic circuits

vvvvvvv

Important basic functions

Comparators

6/8/2018

Different comparator/detector types

» Comparators are used in virtually all digital
VLSI designs, processors, GPUs, etc.

« Different types: 2z "
—0's detector: A=[0000 0000] ' @
— 1's detector: A=[1111 1111]

— Equality comparator: A=B
— Magnitude comparator: A<B or A<=B

Image taken from: http://littleandersensenglish.blogspot.com/2018/01/unit-4-comparative-and-superlative.html

1's and O’s detectors

e All 1's detector:

one big AND4,
equality check | inputs are
with AND2 A / inverted
(NAND2+INV) [
A

Iy

allones

>> >>

* Tree structure: T=0O(logN), A=O(N*logN)

832
Image adapted from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

6/8/2018

1's and Q's detectors (cont’d)

e All O's detector:

AND?2 to check
whether both

0 equality check ﬁ?@ inputs are 1
with NAND2 D’ allzeros

* Tree structure: T=0O(logN), A=O(N*logN)

N

>> >

<

o

Image adapted from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

833

Equality comparator

* Check if individual bits are equal
— XNOR = equality gate
— 1's detector on bitwise checks

Pl oo B
~lo|r|o
» ol o~

B

1]
us]

5 |
an
B[1] 1
QE): j N-input NAND to
A0] jDoi check whether all

inputs are 1

Image adapted from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

834

6/8/2018

Magnitude comparator

* More complicated than the detectors before

* |dea: compute B-A and look at sign
—If B-A=>0 then B=>A and B<A otherwise

* Two's complement
identity: B-A=B+!A+1

o
w

NP

o>

* Requires a carry
propagate adder!

fups

&

carry is
sign bit
O

A<B
c/
9 A>B

also checks
for equality

Image adapted from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

Recap: signed numbers

* Most common: 2's
complement number format

* Use B bit to represent every
iInteger in the range:

_2(8-1) to 2(B-1)_1

* Addition, subtraction, and
multiplication are very simplel!

000 0
001 1
010 2
011 3
100 4
101 3
110 2
111 1

/

MSB indicates
sign of number

6/8/2018

Two's complement numbers

addition happens on
000 / a ring (algebra)
111 001 000

001
010

110 010 o1l
100

101

110
i _4 o 11

100 \

sign flip A
implemented as |A+1

,N W A W e o

Advantages of 2's complement

* Addition can be carried out with standard
adder circuits (ripple, Kogge-Stone, etc.)

* Multiplication can be carried out with
standard multiplier circuits

* Sign can easily be extracted (=MSB)
* Negating requires only INV+increment*

* Fixed-point numbers!

*increment can often be done with carry in at LSB

338

6/8/2018

Other number formats

 Two's complement has an asymmetric
range but addition/subtraction is very easy

« Alternative: sign magnitude

. . 000 0

— Stores sign and magnitude oot)
separately 010 5
— Symmetric range 011 3
— Two zeros... ©® 100 | 0
o _ 101 -1

— Addition, subtraction, and 10 | 2
multiplication requires more 111 | 3

complex VLSI circuits

839

Sign-magnitude can reduce power

« Example: Audio/speech signals
* Lower switching activity!

03 two's complement
/ -memm Sign & magnitude
02 i
0L g 7
o Lt ;
0 2 4 = - -lo -1z -i&
MSB bit position LB
S

>

pdf taken from Kaeslin, 2008

6/8/2018

6/8/2018

Signed vs. unsigned comparison

* Magnitude comparison
harder for signed
numbers:

~C = carry out

—Z = zero (all bits of A8 g g
51 a1 0) TR
—N = negative (MSB of Y c | s
result) A<=B c Is
—V = overflow (input had A>=B iz | s#2
different signs)
— S = sign of result
XOR(N,V)

Useful arithmetic and logic circuits

Shifters and rotators

Logical and arithmetic shifters

Shifters shift bits to right or left

— Left shift (can be multiplication by 2)

— Right shift (can be division by 2)

Used in floating-point units or CORDICs
(coordinate rotation digital computers)

Inserts/extends sign bit

Logical shift right: « Arithmetic shift/right:
1011 LSR 1 = 0101 1011 ASR 1 =1101

Logical shift left: * Arithmetic shift left:
1011 LSL 1 =0110 1011 ASL 1 = 0110

Rotators

Shifts number to left or right and fills with
lost bits on other side

Used for cryptography, encoding and
decoding circuits, number conversion, etc.

Rotate right: 1011 ROR 1 = 1101)

Rotate left: 1001 ROL 1 :Gc_)?i

6/8/2018

Programmable shifters/rotators

* Fixed shifters/rotators are just wires
* Programmable shifters have multiple modes

shift amount
control in = shift direction
shift type (logical,

J< arithmetic, circular)

complexity prohibitive
If implemented with
random logic gates

datain
N
data out

Programmable binary shifter: nop

rgt nop left
L
\ = = IWH
| I
il A A 1 0 A A
Al A | L 0 0|0 A
LI ALl A, 0O 0] 1A O
o S
Ai—l : I Bll
[

6/8/2018

6/8/2018

Programmable binary shifter: right

for arithmetic right shift,
rgt nop left we just copy the MSB!

N
A = M \\Bi A, A, rgt nop left B, B,
= A, A, 0O 1 0 A A
S(A, A, 1 0 0 0 A
~— N A, A, 0]l 01 A DO
T N g
AI1 N 1 i-1
[T1
ml

847

Programmable binary shifter: left

rgt nop left
LT
N J M " A A gt nop left B; B
i /-l i
—+ A, A, O 1 0 A A,
> I
ALl A, 1 0 0 0 A
LI A, A, O 0] 1A O
Ais 1l | /Bi-l
[

(]' for LSB, we
- just insert a 0

848

10

4-bit arithmetic barrel shifter

A — . X
oA A5 TE T Does sign-bit
N In IR eI Tl extension
A, — _
T A T
i v » Very regular
A N . structure
L U e
Ag e | i * Area heavily
= ﬁ_,j »j_,j & affected by
sh [*shd s o shg [wiring

4-bit arithmetic barrel shifter (cont'd)

A I = = = >
T TR T ™« How much
e is the output
A 1 t . ltage
o A A AT
e drop?
A, - .] -I_Jj >B
‘|_IJ lll —!_IJ "T_I_I 1 e Needs
N i | “—J 1 . buffers at
R TR each
sh sh_JJIT@J:‘LerJj outputs

6/8/2018

11

Barrel shifter layout

Sho Sh1 Sh2 Sh3

Buffer
* Width=2*p_*N, N=max. shift amount, p,, = metal pitch
* Delay=1FET + N diffusion capacitances+1INV

Image taken from: An Interconnect-Centric Approach to Cyclic Shifter Design David M. Harris Harvey Mudd College.

Logarithmic barrel shifter

BTN TR .
AN\
A, \W B,

\

U

shl

Image taken from: An Interconnect-Centric Approach to Cyclic Shifter Design David M. Harris Harvey Mudd College.

6/8/2018

12

Logarithmic barrel shifter circuit

shl Ishl sh2 Ish2 sh3 Ish3

I F LA

A, —e M] M] |::|_.,_|33
Lﬁ i Rl

A, M] M] |::|_.,_|32
Lﬁ i i

PR B oy B W B o e il s,
Lﬁ T S

Ml M] M4 B,

control signals
directly obtained

Logarithmic barrel shifter rom shift amount

shl Ishl sh2 Ish2 sh3 Ish3

IE: o -l

A, —e M M M B,
IR I elin

A, X 17 17 17 B,
[I Biln

A) 17 17 17 B,
|

|
|
3
|
|
]
]
o]
o

6/8/2018

13

Logarithmic barrel shifter layout

sl

L " .
A, = L -
L Rl = By

il

-
-

[| e L b
« Width=p, (2K+2K-1), K=log,(N)
* Delay=K-FETs + 2 diffusion capacitances (+1 INV)

855

Image taken from: An Interconnect-Centric Approach to Cyclic Shifter Design David M. Harris Harvey Mudd College.

Logarithmic barrel rotator

* Very similar to shifter

B

Y Y2 Y1 Yp

right shift only right and left shift

» Left rotations are right rotations by N-k bit

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

6/8/2018

14

(Shifter/rotator comparison)

Barrel Logarithmic
Width Speed Width Speed
N | kK| 2Npy |1+Ndiffs P(25+2K-1) | K + 2 diffs
8 | 3 16 p,, 1+8 13 p, 3+2
16 | 4 32 p,, 1+16 23 p, 4+2
32 | 5| 64p, 1+32 41 p,, 5+2
64 | 6 | 128 p,, 1+064 75 p, 6+2

* Barrel better for small (faster, not much bigger)

* Logarithmic shifters always smaller and better for
large shifters, but be careful with PTs in series!

Build trees!

Large multiplexers

6/8/2018

15

6/8/2018

Remember the TG 2-in MUX?

note that this
one Is inverting

S

859

Building large MUXs

* Signal [Sy 5]
%0 S automatically
encodes input to
pass to output

.ot * Delay grows
logarithmically:
— T=0(logN)

MUX2 /4

>
MUX2 //7 ~MUX2.-4

* Area: A=Nlog,(N)

860

16

Simpler circuit: MUX4 example

after 2-4 stages
buffers need to
be inserted

£

— S IS S, 1S,
encodes output
A, 1
-
A, M
'
A, 1
1
A M

™~
transmission gates
can also be used

Not only used in multipliers

Multi-operand addition

6/8/2018

17

Multi-operand addition

* Add four N-bit numbers: Sum = A+B+C+D
» Straightforward solution: Use 3 N-bit carry
propagate adders > large and slow

0001 0111 1101 0010
tree structure can reduce

critical path and reduce

1000 glitching activity
10101
T suffers from glitches!!!
power inefficient
10111

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

863

Better: carry save adder (CSA)

* Remember: Full adder sums 3 inputs and
produces 2 outputs (3:2 compressor)

— Essentially adding three 1-bit numbers
* N full adders in parallel = carry save adder

X, Y, Z X Y,Z, % Y,Z, X Y, Z

S3828180
constant delay: C5C,C,C,0
don’t need to
c,s, ¢ c,s, G S,

: s
wait for carry 3 3
to propagate X1 Vv 2

through .
n-bit CSA .
result in redundant

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

864

6/8/2018

18

Redundant CSA format

* Assume we compute 0110 + 0011

» Carry propagate » Carry save adders
adders compute: compute:
0110 0110
#0011 +0011 T

=1001 =012 1/ number format

adding these
numbers 2>
final result

865

6/8/2018

19

