
6/8/2018

1

ECE4740:
Digital VLSI Design

Lecture 19: Dynamic latches/flip-flops

690

Timing, flip-flops, and latches

Recap

691

6/8/2018

2

Common flip-flop and latch symbols

• Real-world flip-flops (and latches) may have
more inputs and outputs, such as

– Reset in, enable in, scan in, and !Q out

692

D

CLK

Q

rising-edge
triggered FF

D

CLK

Q

falling-edge
triggered FF

D

CLK

Q

positive latch
1-transparent

0-hold

D

CLK

Q

negative latch
0-transparent

1-hold

Positive latch: transparent if CLK=1

693

Q

D

CLK

CLK

!CLK

!CLK

CLK

input sampled

(transparent mode)

feedback (hold mode)

D

CLK

Qin

clk

out

6/8/2018

3

Positive-edge triggered MS flip-flop

694

Q

D

CLK

QM

I1

I2 I3

I4

I5 I6T2

T1
T3

T4

master slave

CLK=0 master transparent; slave hold

0

1

Positive-edge triggered MS flip-flop

695

Q

D

CLK

QM

I1

I2 I3

I4

I5 I6T2

T1
T3

T4

master slave

CLK=1 master hold; slave transparent

1

0

6/8/2018

4

Setup and hold times

696

clock

In

Out output

stable

output

stable

time

time

time

tsetup thold

tpd,ff

output
undefined

data must
be stable

9chncy3820v
58voq5n0521

tcd,reg

clock

Non-ideal clocks: clock skew

697

!CLK

CLK

ideal clocks

!CLK

CLK

Non-ideal clocks

clock skew

1-1 overlap

0-0 overlap

clock skew can happen due to
uneven wire lengths, capacitances,

different fan-outs, etc.

6/8/2018

5

1-1 overlap is dangerous

• Direct path from D to Q during short time
when both CLK and !CLK are high
– Happens during 1-1 overlap

698

D

CLK

!CLK

!Q

!CLK Q

CLK

P1

P2

P3

P4

I1 I2
I3 I4

on on

1-1 overlap is dangerous (cont’d)

• Both B and D are driving A when CLK and
!CLK are both high (1-1 overlap)

699

D

CLK

!CLK

!Q

!CLK Q

CLK

B

AP1

P2

P3

P4

I1 I2
I3 I4

on

on

X=?

6/8/2018

6

Generating a non-1-1-overlapping clock

• To avoid overlapping clocks 1-1 we need

– tools for accurate timing analysis OR

– non-1-1-overlapping clock signals

– One can use SR-latch to generate such clocks

700

CLK

CLK1

CLK2

tnon_overlap

Dynamic latches and flip-flops

Building sequential logic with fewer transistors

701

6/8/2018

7

Static vs. dynamic storage cells

• Static cells use bistable element with feedback
(regeneration)

– Preserve state as long as power is on

• Static storage is preferred when updates are
infrequent (clock gating etc.)

• Dynamic storage on parasitic capacitors

– Preserve state only for milliseconds

• Dynamic storage cells are usually smaller,
achieve higher speed and consume lower power

702

Dynamic edge-triggered flip-flop

703

T1 T2I1 I2

QQM

D

C1 C2

!CLK CLK

CLK !CLK

master slave

!CLK

CLK

master transparent

slave hold

master hold

slave transparent

gate cap of I2, and
junction cap & overlap

gate cap of T2

6/8/2018

8

Dynamic ET flip-flop (cont’d)

704

T1 T2I1 I2

QQM

D

C1 C2

!CLK CLK

CLK !CLK

master slave

tsu =

thold =

tpd =

zero

tpd_tx

2tpd_inv+tpd_tx

• Requires only 8 transistors; clock load = 4

• Dynamic nodes need periodical refresh

Issue 1: race conditions

705

T1 T2I1 I2
QD

C1 C2

!CLK CLK

CLK !CLK

!CLK

CLK
0-0 overlap race condition

toverlap0-0 < tT1 +tI1 + tT2

1-1 overlap race condition

toverlap1-1 < thold

output can change
at falling edge

data must be stable
during high phase

6/8/2018

9

Solution: non-overlapping clocks

706

T1 T2I1 I2
QD

C1 C2

CLK1 CLK2

!CLK1 !CLK2

CLK2

CLK1
tnon_overlap

master transparent

slave hold

master hold

slave transparent

requires
routing of 4
clock signals

Issue 2: robustness

• Dynamic flip-flops suffer from

– Coupling between signal nets and internal
storage nodes (can destroy FF state)

– Leakage currents cause state to leak with time

• Solution: pseudostatic FF

707

D

CLK

!CLK

!CLK

CLK

Q

add weak
feedback inverter

to each latch

6/8/2018

10

The C2MOS register

A clock-skew insensitive approach

708

C2MOS (clocked CMOS) ET FF

709

CLK

!CLK

!CLK

CLK

QM

C1 C2

QD

M1

M3

M4

M2 M6

M8

M7

M5

Master Slave

!CLK

CLK

master transparent

slave hold

master hold

slave transparent

on

on

off

off
on

onoff

off

6/8/2018

11

C2MOS FF: 0-0 overlap

710

0 0
QM

C1 C2

QD

M1

M4

M2 M6

M8

M5

!CLK

CLK

!CLK

CLK

all clock inputs
are zero

C2MOS FF: 1-1 overlap

711

1 1

QM

C1 C2

QD

M1

M2 M6

M5

M3 M7

!CLK

CLK

!CLK

CLK

1-1 overlap constraint

toverlap1-1 < thold

all clock inputs
are VDD

6/8/2018

12

(Slope matters: transient response)

712

-0.5

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8

QM(3)
Q(3)

Q(0.1)

Time (nsec)

clk(0.1)

CLK(3)

For a

0.1 ns clock

For a

3 ns clock

(race condition

exists)

Image adapted from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Pipelining & retiming

For high-throughput designs

713

6/8/2018

13

Consider the timing of this circuit

• Critical path:
Tmin=tpd,ff+tpd,add+tpd,abs+tpd,log+tsu,ff

714

R
E
G

R
E
G

R
E
G

log

a

CLK

CLK

CLK

Out

b

+

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Pipelining reduces critical path

• Insert pipeline registers (flip-flops)

• Shortens critical path!
Tpipe,min=tpd,ff+max{tpd,add,tpd,abs,tpd,log}+tsu,ff

715

+

R
E
G

R
E
G

R
E
G

log

a

CLK

CLK

CLK

R
E
G

CLK

R
E
G

CLK

Out

b

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

6/8/2018

14

Pipelining

716

+

R
E
G

R
E
G

R
E
G

log

a

CLK

CLK

CLK

R
E
G

CLK
R
E
G

CLK

Out

b

Cycle Add Abs Log

1 a1+b1

2 a2+b2 |a1+b1|

3 a3+b3 |a2+b2| log|a1+b1|

4 a4+b4 |a3+b3| log|a2+b2|

… … … …

a1+b1

Pipelining (cont’d)

717

+

R
E
G

R
E
G

R
E
G

log

a

CLK

CLK

CLK

R
E
G

CLK

R
E
G

CLK

Out

b

Cycle Add Abs Log

1 a1+b1

2 a2+b2 |a1+b1|

3 a3+b3 |a2+b2| log|a1+b1|

4 a4+b4 |a3+b3| log|a2+b2|

… … … …

|a1+b1|

new data item
inserted in pipeline

6/8/2018

15

Pipelining (cont’d)

718

+

R
E
G

R
E
G

R
E
G

log

a

CLK

CLK

CLK

R
E
G

CLK
R
E
G

CLK

Out

b

Cycle Add Abs Log

1 a1+b1

2 a2+b2 |a1+b1|

3 a3+b3 |a2+b2| log|a1+b1|

4 a4+b4 |a3+b3| log|a2+b2|

… … … …

log|a1+b1|

new data item
inserted in pipeline

Pipelining improves throughput!

719

+

R
E
G

R
E
G

R
E
G

log

a

CLK

CLK

CLK

R
E
G

CLK

R
E
G

CLK

Out

b

• Processes 1 data item per clock cycle at higher fmax

 higher throughput (time per data item Tmin,pipe)

• Ideally: Tmin,pipe = tpd,ff+tpd,logic/N+tsu,ff with N stages

• Throughput limit: Tmin,pipe� tpd,ff+tsu,ff

6/8/2018

16

Pipelining introduces latency

720

+

R
E
G

R
E
G

R
E
G

log

a

CLK

CLK

CLK

R
E
G

CLK
R
E
G

CLK

Out

b

• Latency = # of cycles for data to
propagate from input to output

• Latency = 4 (four rising clock edges)

The feedback problem

721

+

R
E
G

R
E
G

R
E
G

log

a

CLK

CLK

CLK

R
E
G

CLK

R
E
G

CLK

Out

b

• If feedback path is present, latency will reduce
throughput (circuit has to wait for data)

• Problem in processors and application specific
integrated circuits (data dependencies)

6/8/2018

17

Solution: Pipeline interleaving

• Idea: Process independent problems in an
interleaved manner in the same hardware

722

A B

reduces
throughput by 2x

A
P1

B
P2

even cycles

A
P2

B
P1

odd cycles

Pipelining using C2MOS

• Circuit is race-condition free (NORA) if
functions F and G are non-inverting!

723

CLK

!CLK

!CLK

CLKC1
C2

Out

M1

M3

M4

M2 M6

M8

M7

M5

F
In

G
CLK

!CLK

M1

M3

M4

M2

6/8/2018

18

Your turn: pipeline a MAC unit

724

tsu,ff=0.5ns

DQ

CLK

tpd,add=2ns

tpd,mult=7ns
DQ

DQ

CLK

CLK

*

DQ

CLK

+

A

B

C

D

tpd,ff=0.5ns

multiply-accumulate (MAC) unit: D=B*C+A

• What is the max.
clock frequency?

• Where is the
critical path?

• Insert a single
pipeline stage

• What is the max.
clock frequency
after pipelining?

Critical path and max. clock freq.

• Tmin=tpd,ff+tpd,mult+tpd,add+tsu,ff=10ns

• fmax=100MHz
725

tsu,ff=0.5ns

DQ

CLK

tpd,add=2ns

tpd,mult=7ns
DQ

DQ

CLK

CLK

*

DQ

CLK

+

A

B

C

D

tpd,ff=0.5ns

6/8/2018

19

Pipelining: max. clock freq. now?

• Tmin,pipe=tpd,ff+tpd,mult+tsu,ff=8ns

• fmax=125MHz
726

tsu,ff=0.5ns

DQ

CLK

tpd,add=2ns

tpd,mult=7ns
DQ

DQ

CLK

CLK

*

DQ

CLK

+

A

B

C

D

tpd,ff=0.5ns data must arrive in
the same cycle at
input of adder!

