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ECE4740: 
Digital VLSI Design

Lecture 19: Dynamic latches/flip-flops
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Timing, flip-flops, and latches

Recap
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Common flip-flop and latch symbols

• Real-world flip-flops (and latches) may have 
more inputs and outputs, such as 

– Reset in, enable in, scan in, and !Q out
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Positive-edge triggered MS flip-flop
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Setup and hold times
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Non-ideal clocks: clock skew
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1-1 overlap is dangerous

• Direct path from D to Q during short time 
when both CLK and !CLK are high 
– Happens during 1-1 overlap
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1-1 overlap is dangerous (cont’d)

• Both B and D are driving A when CLK and 
!CLK are both high (1-1 overlap)
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Generating a non-1-1-overlapping clock

• To avoid overlapping clocks 1-1 we need 

– tools for accurate timing analysis OR

– non-1-1-overlapping clock signals

– One can use SR-latch to generate such clocks
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Dynamic latches and flip-flops

Building sequential logic with fewer transistors
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Static vs. dynamic storage cells

• Static cells use bistable element with feedback 
(regeneration)

– Preserve state as long as power is on

• Static storage is preferred when updates are 
infrequent (clock gating etc.)

• Dynamic storage on parasitic capacitors

– Preserve state only for milliseconds

• Dynamic storage cells are usually smaller, 
achieve higher speed and consume lower power
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Dynamic edge-triggered flip-flop
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Dynamic ET flip-flop (cont’d)

704

T1 T2I1 I2

QQM

D

C1 C2

!CLK CLK

CLK !CLK

master slave

tsu =

thold =

tpd =

zero

tpd_tx

2tpd_inv+tpd_tx

• Requires only 8 transistors; clock load = 4

• Dynamic nodes need periodical refresh

Issue 1: race conditions
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Solution: non-overlapping clocks
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Issue 2: robustness

• Dynamic flip-flops suffer from

– Coupling between signal nets and internal 
storage nodes (can destroy FF state)

– Leakage currents cause state to leak with time

• Solution: pseudostatic FF
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The C2MOS register

A clock-skew insensitive approach
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C2MOS (clocked CMOS) ET FF
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C2MOS FF: 0-0 overlap
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C2MOS FF: 1-1 overlap
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(Slope matters: transient response)
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Image adapted from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Pipelining & retiming

For high-throughput designs

713
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Consider the timing of this circuit

• Critical path:
Tmin=tpd,ff+tpd,add+tpd,abs+tpd,log+tsu,ff
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Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Pipelining reduces critical path

• Insert pipeline registers (flip-flops) 

• Shortens critical path!
Tpipe,min=tpd,ff+max{tpd,add,tpd,abs,tpd,log}+tsu,ff
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Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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Pipelining
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Pipelining (cont’d)
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Pipelining (cont’d)
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Pipelining improves throughput!
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• Processes 1 data item per clock cycle at higher fmax

 higher throughput (time per data item Tmin,pipe)

• Ideally: Tmin,pipe = tpd,ff+tpd,logic/N+tsu,ff with N stages

• Throughput limit: Tmin,pipe� tpd,ff+tsu,ff
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Pipelining introduces latency
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• Latency = # of cycles for data to 
propagate from input to output

• Latency = 4 (four rising clock edges) 

The feedback problem
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• If feedback path is present, latency will reduce 
throughput (circuit has to wait for data)

• Problem in processors and application specific 
integrated circuits (data dependencies)
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Solution: Pipeline interleaving

• Idea: Process independent problems in an 
interleaved manner in the same hardware
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Pipelining using C2MOS 

• Circuit is race-condition free (NORA) if 
functions F and G are non-inverting!
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Your turn: pipeline a MAC unit
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multiply-accumulate (MAC) unit: D=B*C+A

• What is the max. 
clock frequency?

• Where is the 
critical path?

• Insert a single 
pipeline stage

• What is the max. 
clock frequency 
after pipelining?

Critical path and max. clock freq.

• Tmin=tpd,ff+tpd,mult+tpd,add+tsu,ff=10ns

• fmax=100MHz
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Pipelining: max. clock freq. now?

• Tmin,pipe=tpd,ff+tpd,mult+tsu,ff=8ns

• fmax=125MHz
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