ECE4740: Digital VLSI Design
 Lecture 18: Latches and flipflops

Simple static storage cells
Latches

Recap: regenerative property

even number of cascaded inverters

- If the |gain| in the transient region is larger than 1 , only A and B are stable operation points
- (C is a metastable operation point)

Bistable circuits

- Cross-coupling of two inverters results in bistable circuit (=two stable states)

- We want to change stored value
- Apply a trigger pulse at $\mathrm{V}_{\mathrm{i} 1}$ or $\mathrm{V}_{\mathrm{i} 2}$
- Width of trigger pulse must be larger than the total propagation delay ($2 x$ inverter delay)

Bistable circuits (cont'd)

- Cross-coupling of two inverters results in bistable circuit (=two stable states)

- Mainly two approaches:
- Cutting feedback loop \rightarrow MUX based latch
- Overpowering feedback loop \rightarrow used in SRAMs

Positive \& negative latches

- Positive latch: transparent high
- Negative latch: transparent low

MUX-based latches

- Change stored value by cutting feedback

positive latch
$\mathrm{Q}=!\mathrm{CLK}^{*} \mathrm{Q}+\mathrm{CLK}{ }^{*} \mathrm{D}$
transparent when CLK is high

negative latch
$\mathrm{Q}=\mathrm{CLK} * \mathrm{Q}+!\mathrm{CLK} * \mathrm{D}$
transparent when CLK is low

MUX latch with transmission gates

How to reduce the "clock load"

- Clock needs to drive 4 transistors ($C L=4$)
- Solution: pass transistors

- Reduced noise margin
- Higher leakage currents:
\rightarrow WHY?

Latch race problem

which value of B is stored?

- Two-sided clock constraint:
$-T \geq t_{\text {pd,latch }}+t_{\text {pd,logic }}+t_{\text {su,latch }}$
$-\mathrm{T}_{\text {high }}<\mathrm{t}_{\mathrm{cd} \text {,latch }}+\mathrm{t}_{\mathrm{cd} \text {,logic }}$
can be hard or
impossible to meet
both constraints

One solution: latch-based design

- What if we (re)move Logic B?

Often a better solution!

- This is a single-edge triggered flip-flop

Edge-triggered bistables
Flip-flops

Master-slave edge-triggered flip-flop

CLK $=0$ transparent

$$
\text { CLK }=0 \rightarrow 1 \quad \text { hold }
$$

transparent

MS ET FF implementation

CLK $=0 \rightarrow$ master transparent; slave hold

MS ET FF implementation (cont'd)

CLK=1 \rightarrow master hold; slave transparent

Timing properties of MS ET FF

- Assume propagation delays $\mathrm{t}_{\mathrm{pd}, \mathrm{inv}} \& \mathrm{t}_{\mathrm{pd}, \mathrm{tg}}$
- Assume contamination delays $=0$
- Assume inverter delay for !CLK = 0

Setup time

- Time before rising edge of CLK that D must be valid

$$
t_{\text {setup }}=3 \cdot t_{p d, i n v}+t_{p d, t g}
$$

Propagation delay

- Time for Q_{M} to reach Q (output)

$$
t_{p d, f f}=t_{p d, i n v}+t_{p d, t g}
$$

Hold time can be negative

- Time D must be stable after rising edge of CLK signal

$$
t_{\text {hold }}=-t_{p d, i n v} \quad \begin{gathered}
\text { If assuming that CLK } \\
\text { inverter has tpa }=0
\end{gathered}
$$

How to simulate setup time

- Shift input D closer to rising CLK signal until Q output is incorrect

How to simulate setup time (cont'd)

How to simulate setup time (cont'd)

Propagation delay simulation

How to reduce the clock load?

- Clock load per flip-flop important: directly affects power dissipation of clock network
- Can reduce clock load at cost of robustness

Sizing of reduced clock-load MS FF

reverse conduction

- To switch state of master, T_{1} must be sized to overpower I_{2} (source driver must be strong too)
- To avoid reverse conduction, I_{4} must be weaker than $I_{1} \rightarrow$ how can we build a weak inverter?

For latches and flip-flops
More clock-skew issues

Non-ideal clocks: clock skew

ideal clocks

Non-ideal clocks
clock skew

1-1 overlap
0-0 overlap

Issue 1: race condition

- Direct path from D to Q during short time when both CLK and !CLK are high (1-1 overlap)

Issue 2: undefined state

- Both B and D are driving A when CLK and !CLK are both high (1-1 overlap)

Issue 3: dynamic storage

- When CLK and !CLK are both low (0-0 overlap) level of X stored on parasitic capacitances (might discharge)

Pseudo-static two-phase ET FF

Generating a non-1-1-overlapping clock

- To completely avoid overlapping clocks 1-1 (the 0-0 case is not that critical) we need
- tools for accurate timing analysis OR
- non-overlapping clock signals

Useful for generating non-overlapping clocks

Set-reset (SR) latch

SR latch basics

\mathbf{S}	\mathbf{R}	\mathbf{Q}	$!\mathbf{Q}$	
0	0	\mathbf{Q}	$!\mathbf{Q}$	memory
1	0	1	0	set
0	1	0	1	reset
1	1	0	0	not allowed

- Similar to cross-coupled inverter pair
- Input S and R can force outputs Q and !Q in desired state

SR latch basics (cont'd)

S	R	Q	$!Q$	
0	0	Q	$!Q$	memory
1	0	1	0	set
0	1	0	1	reset
1	1	0	0	not allowed

- Assume $\mathrm{Q}=0$ and $!\mathrm{Q}=1$
- Assume $\mathrm{S}=0$ and $\mathrm{R}=0$

A	B	$!(A+B)$
0	0	1
0	1	0
1	0	0
1	1	0

SR latch basics (cont'd)

\mathbf{S}	\mathbf{R}	\mathbf{Q}	$!\mathbf{Q}$	
0	0	\mathbf{Q}	$!\mathbf{Q}$	memory
1	0	1	0	set
0	1	0	1	reset
1	1	0	0	not allowed

- Set $S=1$ and keep $R=0$
- Then $\mathrm{Q}=1$ and $!\mathrm{Q}=0$

A	B	$!(A+B)$
0	0	1
0	1	0
1	0	0
1	1	0

SR latch basics (cont'd)

\mathbf{S}	\mathbf{R}	\mathbf{Q}	$!\mathbf{Q}$	
0	0	Q	$!\mathrm{Q}$	memory
1	0	1	0	set
0	1	0	1	reset
1	1	0	0	not allowed

- Set $\mathrm{R}=1$ and keep $\mathrm{S}=0$
- Then $\mathrm{Q}=0$ and $!\mathrm{Q}=1$

A	B	$!(A+B)$
0	0	1
0	1	0
1	0	0
1	1	0

Two-phase non-overlapping clock generator

Two-phase non-overlapping clock generator

Another storage cell: Clocked D latch

Ratio'ed clocked SR latch

- Can be used in static RAMs (SRAMs)

Ratio'ed clocked SR latch (cont'd)

- Ratio'ed \rightarrow M7 and M8 must succeed in bringing Q low (overcoming M4)

6T CMOS SR Latch

