ECE4740: Digital VLSI Design

Lecture 14: Pass transistors and transmission gates

Ratio'ed logic

Other CMOS logic styles

Why do we even care?

- Advantages of static CMOS
- Low static power
- Robust
- Supported by most synthesis \& back-end tools
- "Disadvantages" of static CMOS
- For N inputs, requires (at least) 2N transistors
- PUN can be area consuming
- Same function is computed twice

Ratio'ed logic

(a) resistive load

(b) depletion load NMOS

(c) pseudo-NMOS

- Goal: Reduce \# of transistors over CMOS
- Ratio'ed = functionality depends on ratios!

Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

Ratio'ed logic with resistive load

- N transistors + load R_{L}
- $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$ remember 2015
practice prelim 1?
- $V_{O L}=R_{P D N} /\left(R_{P D N}+R_{L}\right)$
- Asymmetric VTC
- Reduced noise margin
- Static power consumption
- $\mathrm{t}_{\text {pLH }}=0.69 \mathrm{R}_{\mathrm{L}} \mathrm{C}_{\mathrm{L}} \xrightarrow{\begin{array}{c}\text { remember } 2015 \\ \text { practice prelim 1? }\end{array}}$
- What is $\mathrm{t}_{\mathrm{pHL}}$?

Pseudo-NMOS w/ active load

- $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$

- For $V_{\text {Ol }}$ assume NMOS lin. \& PMOS sat.

$$
V_{O L} \approx \frac{\mu_{p} W_{p}}{\mu_{n} W_{n}} \overline{V_{D S A T p}}
$$

Disadvantage: Static power

- Static power consumption when output is low (direct current through PMOS)
- Assume PMOS is in saturation:
$P_{\text {low }}=V_{D D} I_{\text {low }} \approx V_{D D}\left|k_{p}\left(-\left(V_{D D}-V_{T_{p} p}\right) V_{D S A T_{p} p}-\frac{V_{D S A T_{p}}^{2}}{2}\right)\right|$
- One would need better loads!

Ratio'ed logic

Other CMOS logic styles

Improving loads is critical

- Differential cascode voltage switch logic (DCVSL)

DCVSL details

- PDN1 and PDN2 are mutually exclusive
- If PDN1 conducts PDN2 is off
- And vice versa
- DCVSL has full rail-to-rail swing
- No static power consumption
- Provides complementary signal
- Gate is still ratio'ed!

DCVSL example: XOR/XNOR

 PDN1 and PDN2

Why aren't we always using DCVSL?

- Advantages of differential cascode voltage switch logic (DCVSL) over static CMOS
- Complementary outputs immediately available
- May reduce \# of transistors up to 2x
- Keeps values (similar to latches)
- Disadvantages
- Doubles number of wires (affects density)
- Often higher dynamic power dissipation
- Design tools mostly handle only static CMOS

Useful for certain logic gates

Pass-transistor logic

Full adder in static CMOS

- Requires $24+4$ (for C and Sum inv.) transistors

Is there a better way?

- XOR/XNOR gates usually require a large number of transistors in static CMOS logic
- Remember: pass transistors
- NMOS switch closes if gate input is high

- But, NMOS pass strong 0 but weak 1

Pass transistor (PT) logic

- What is this circuit doing?
- Find truth table

- Is it static (is there always a low impedance path to both rails)?
- How many transistors would you need with static CMOS?

AND gate with pass transistors

A	B	$F=A^{*}$ B
0	0	0
0	1	0
1	0	0
1	1	1

- Requires 4 logic gates (needs an inverter)
- CMOS logic would require 6 logic gates
- The gate can be static
- No rail-to-rail swing

Properties of PT logic

- Gate can be static (if designed properly)
- N transistors instead of 2 N
- Usually no static power consumption
- Ratioless
- Gate has no signal directivity, i.e., is bidirectional (versus unidirectional)
- Non-inverting logic

Complementary PT logic (CPL)

- Also called differential PT logic (DPL)

- Similar to DCVSL
- Input complementary inputs
- Output complementary outputs

CPL/DPL efficient for XOR etc.

- Pros
- No need for extra inverters (theoretically)
- Static and modular (same topology)
- Simple XOR (good for adders)

Disadvantages of CPL/DPL

- Cons
- Additional routing overhead (2x)
- Static power dissipation problems
- Bidirectional

CPL/DPL-based full adder

- $20+4^{*} 2=28$ transistors (=static CMOS)
- Why are we using inverters at the output?

Cascading pass transistors

VTC of PT AND gate

- Pure PT logic is not regenerative
- Signal gradually degenerates after passing through a number of PTs (use inverters to fix)

Buffered pass transistor logic

- Buffer needed to recover weak 1

- Body effect makes it even worse

Body effect revisited

- Large V_{SB} when pulling high (B is tied to GND and S charged close to $V_{D D}$)
- Voltage drop at node x is even worse
$V_{x}=V_{D D}-\left(V_{T n 0}+\gamma\left(\sqrt{\left|2 \phi_{f}\right|+V_{x}}-\sqrt{2 \phi_{f}}\right)\right)$

V_{T} drop causes static power

- Pass transistor suffers from body effect
- M_{2} may be weakly conducting forming a path from $V_{D D}$ to GND

Solution 1: level restorer

- Full swing on node $x \rightarrow$ no static power
- No static backwards current (restorer only high when A is high)
- For correct operation M_{r} must be sized properly \rightarrow results in ratio'ed logic!

Solution 1: level restorer (cont'd)

- Ratio'ed logic:

- When node \times going from 1 to $0, M_{n}$ must be stronger than pull up M_{r}
- Otherwise \times never goes below \bigvee_{M} of inverter
- Need to size M_{n} and M_{r}

Sizing the level restorer

- Restorer also affects speed and power
- Increases capacitance at node \times

Proper way of using pass transistors
Transmission gates

Transmission gate

$A=B$ if $C=1$

- Full swing bidirectional switch controlled by the gate signal C
- NMOS good pull-down; PMOS good pull-up
- Enables rail-to-rail swing

Resistance of transmission gate

- TG has only mild non-linearity

TG 2-to-1 multiplexer (MUX)

XOR gate using transmission gates

- Requires only 6 transistors
- CMOS requires 12 transistors

XOR gate using transmission gates

- Requires only 6 transistors
- Transmission gate ensures no voltage drop!

TG-based full adder

- Similar delays for sum and carry

TG-based full adder (cont'd)

- 16 transistors (opposed to 28 for CMOS)
- Full rail-to-rail swing

(Differential TG logic)

Caveat: delay in TG networks

- Elmore delay of RC chain:

$$
\begin{gathered}
\text { quadratic delay increase } \\
\text { in number of TGs } \\
\hline
\end{gathered}
$$

$$
t_{p}=0.69 \sum_{k=0}^{n} C R_{e q} k=0.69 C R_{e q} \frac{n^{\prime}(n+1)}{2}
$$

Delay optimization

- Insert buffers into TG network

- Optimum number of buffers:
$\underset{\substack{\text { rule of thumb: no more } \\ \text { than } 2-3 \text { TGs in series }}}{\text { _ }} m_{\text {opt }}=1.7 \sqrt{\frac{t_{i n v}}{C R_{e q}}} \approx 3.4$

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

