ECE4740: Digital VLSI Design
 Lecture 13: Worst-case and best-case delays

Another one
Sizing example

Start with a simple digital circuit

- Compute min. propagation delay
- Assume inverter PMOS:NMOS ratio of 2:1

- Effective fan-out: $\mathrm{H}=5$
- Path logical effort: $\mathrm{G}=1^{*}(4 / 3)^{*}(5 / 3)^{*} 1$
- Path branching effort: $\mathrm{B}=1^{*} 2^{*} 1^{*} 1$
- Total path effort: $\mathrm{F}=\mathrm{H}^{*} \mathrm{G}^{*} \mathrm{~B}=22.22$
- Optimal gate effort: $\mathrm{f}_{\mathrm{opt}}=\mathrm{F}^{1 / 4}=2.1712$

Calculate min. propagation delay

- Min. propagation delay:
- $\mathrm{P}=1+2+2+1=6$

$$
t_{p}=t_{p 0}(P+N \sqrt[N]{F})
$$

- $\mathrm{N}^{*} \mathrm{f}_{\text {opt }}=8.6847$

> sizing not required
for min. delay!

$$
t_{p}=t_{p 0} 14.68 /
$$

Write down fan-outs

- $\mathrm{f}_{\text {opt }}=1^{*} \mathrm{a}^{*} 1 \rightarrow \mathrm{a}=2.17$
- $\mathrm{f}_{\mathrm{opt}}=(4 / 3) *(\mathrm{~b} / \mathrm{a}) * 2 \rightarrow \mathrm{~b}=1.76$
- $\mathrm{f}_{\text {opt }}=(5 / 3)^{*}(\mathrm{c} / \mathrm{b})^{*} 1 \rightarrow \mathrm{c}=2.3$

simpler gates are used to drive more capacitancel!!

- Final check: $C_{L} / c=f_{\text {opt }} \rightarrow$ YES

Size transistors

- Size transistors (PMOS/NMOS=2)
- Hint: Use recursive formula from slide 606:

$$
g_{i+1} s_{i+1}=\frac{h_{i}}{b_{i}} g_{i} s_{i}^{\substack{\text { sizing } \\ \text { factor }}}
$$

- Begin from start to end and size iteratively

$$
g_{i+1} s_{i+1}=\frac{h_{i}}{b_{i}} g_{i} s_{i}^{\text {sizing }} \text { factor }
$$

- Here $\mathrm{s}_{1}=1 \rightarrow$ proceed from left-to-right

Size transistors (cont'd)

- PMOS

$$
g_{+1+} s_{+1+1}=\frac{h_{i}, g_{i}, s_{2}}{}
$$

gate effort
$-\left(W_{p}=2 \text { to match inv. }\right)^{*} a / g_{2}=3.25$

- NMOS
$-\left(W_{n}=2 \text { to match inv. }\right)^{*} a / g_{2}=3.25$

Size transistors (cont'd)

- PMOS
$-\left(\mathrm{W}_{\mathrm{p}}=4\right.$ to match inv. $) * \mathrm{~b} /\left(\mathrm{g}_{3}\right)=4.22$
- NMOS
$-\left(W_{n}=1\right.$ to match inv. $) * b /\left(g_{3}\right)=1.01$

- PMOS
$-\left(\mathrm{W}_{\mathrm{p}}=2 \text { to match inv. }\right)^{*} \mathrm{c} / \mathrm{g}_{4}=4.6$
- NMOS
$-\left(\mathrm{W}_{\mathrm{n}}=1 \text { to match inv. }\right)^{*} \mathrm{c} / \mathrm{g}_{4}=2.3$

This time for CMOS gates

Optimal number of stages

Optimal number of stages

- Total (normalized) delay:

$$
D=N \sqrt[N]{F}+\sum_{i=1}^{N_{1}} p_{i}+\left(N-N_{1}\right) p_{i n v}
$$

"Good" number of stages

- Formula has no closed-form solution
- Neglecting parasitics, e.g., $\mathrm{p}_{\mathrm{inv}}$
- Optimal stage effort $\rho \approx 3.59$
- $2.4<\rho<6 \rightarrow$ delays within 15% of optimal
- $\rho=4$ is usually a good pick
- Rule of thumb for good number of stages:

$$
\widehat{N}=\log _{4}(F)
$$

Recipe for sizing

1. Compute total path effort: $\mathrm{F}=\mathrm{GHB}$
2. Estimate "good" number of stages:

$$
\widehat{N}=\log _{4}(F)
$$

3. Estimate (normalized) delay

$$
D=\widehat{N} \sqrt[\widehat{N}]{F}+P
$$

4. Sketch logic + additional inverters
5. Compute stage effort and size transistors

Limitations of logical effort approach

- Chicken-or-egg problem
- Estimating delay depends on logic, which depends on minimum delay you actually want
- Simplistic model
- Neglects effects of input slopes etc.
- Optimizes for speed only
- Not accurate (Cadence sweeps still required)
- But: helps to make quick design decisions!
- Decisions can be made without actually sizing it

Important for timing analysis
Worst-case and best-case delays

Worst-case delays

- Worst-case delays depend on how many nodes are charged and how many need to be discharged
- Consider this gate:

$$
\text { out }=\overline{D+A(B+C)}
$$

Worst-case falling delay

charged

to VDD

- Output must be 1
- Charge as many capacitances as you can to VDD
- depends on sizing!
- $[\mathrm{ABCD}]=[1000]$
- Total node caps at VDD: 6+6+6+2

Worst-case falling delay (cont'd)

- Discharge as many capacitances to GND as you can
- Also discharge through weakest transistor!
- Initial state:
[ABCD] $=[1000]$

- End state:
$[A B C D]=[1100]$

Why not $\mathrm{C}=0 \rightarrow 1$?

this node remains at

- Initial state:
[ABCD]=[1000]
- End state:
[ABCD]=[1010]
- Not the worst case: fewer node caps discharged!

Worst-case rising delay

- Output must be 0
- Discharge as many capacitances to GND as you can
- $[\mathrm{ABCD}]=[1100]$
- Total discharged nodes: 6+6+2+2

Worst-case rising delay (cont'd)

charged through
 strong PMOS

- Output must go to 1
- Charge as many capacitances as you can

How about $A=1 \rightarrow 0$?

- Not the worst case!

Best-case falling delay

- Output must be 1
- Discharge as many capacitances to GND as you can
- $[\mathrm{ABCD}]=[0110]$
- Total charged nodes:

Best-case falling delay (cont'd)

- Initial
state: $[\mathrm{ABCD}]=[0110]$
- Final state:
[ABCD]=[1111]

Best-case rising delay

- Output must be 0
- Charge as many capacitances to VDD as you can
- $[A B C D]=[0001]$

Best-case rising delay (cont'd)

- Output must go to 1
- Charge as few capacitances as you can
- Initial state:

