ECE4740: Digital VLSI Design

Lecture 12: CMOS logic sizing

Needed for sizing CMOS logic gates

Logical effort

439

438

gical effor ıst work h	t: givo arder	en a loa to prod	d, com uce sin	plex gate nilar spee
Gate Type	g (for 1 to 4 input gates)			
	1	2	3	n
Inverter	1			
NAND		4/3	5/3	(n+2)/3
NOR		5/3	7/3	(2n+1)/3
mux		2	2	
		-	40	

460

Total path effort

- Path logical effort: $G = \prod_{j=1}^{N} g_j$
- Path effective fan out: $H = C_L/C_{g1}$
- Path branching effort: B = ∏^N_{j=1} b_j
 Total path effort: F = G ⋅ B ⋅ H
- Gate effort for min. path delay: $f_{opt} = \sqrt[N]{F}$
- Effective fan-out of $h_j = f/(g_j b_j)$ each stage:

Summary						
	Term	Stage expression	Path expression			
	Logical effort	g _i (depends on logic style, technology, but not on size)	$G = \prod g_i$			
	Electrical effort	$ \begin{aligned} &h_i = C_{out, i} / C_{in, i} \ (C_{out, i} \text{ depends on} \\ &W_{i+1}, \text{ and } C_{in, i} \text{ depends on } W_i) \end{aligned} $	$H = \prod h_i$			
	Branch effort	b _i	$B = \prod b_i$			
	Path effort	$f_i = g_i h_i b_i = f$ (equalize stage delay)	$F = \prod f_i$			
	Intrinsic delay	p _i	$P = \Sigma p_i$			
	Number of stages	1	Ν			
			463			

