ECE4740: Digital VLSI Design Lecture 10: Static CMOS design

Quick review
Elmore delay

Elmore delay will be used later!

- Elmore delay at node i is given by

Example 1: Elmore delay

- Elmore delay $\tau_{D 1}$ for node 1 ?

Example 2: Elmore delay

- Elmore delay $\tau_{D 3}$ for node 3 ?

Another wire model

Distributed RC wire

Putting it all together

- With $R_{w}=r_{w} L$ and $C_{w}=c_{w} L$
- Propagation delay is
use Elmoret

$$
t_{p} \approx 0.69 R_{s} C_{w}+0.35 R_{w} C_{w}
$$

Why is that?

compute
Elmore delay

Why is that? (math alert)

$$
\begin{aligned}
& R_{w}=r_{w} L \\
& C_{w}=c_{w} L
\end{aligned}
$$

- Elmore delay:

$$
\begin{aligned}
\tau & =\left(R_{s}+\frac{r_{w} L}{N}\right) \frac{c_{w} L}{N}+\left(R_{s}+\frac{r_{w} L}{N}+\frac{r_{w} L}{N}\right) \frac{c_{w} L}{N}+\cdots+\left(R_{s}+N \frac{r_{w} L}{N}\right) \frac{c_{w} L}{N} \\
& =\frac{N R_{s} c_{w} L}{N}+\left(\frac{L}{N}\right)^{2}\left(r_{w} c_{w}+2 r_{w} c_{w}+\cdots+N r_{w} c_{w}\right) \\
& =R_{s} C_{w}+\left(r_{w} c_{w}\right)\left(\frac{L}{N}\right)^{2}(1+2+\cdots+N)=R_{s} C_{w}+\left(r_{w} c_{w}\right)\left(\frac{L}{N}\right)^{2} \frac{N(N+1)}{2} \\
& =R_{s} C_{w}+r_{w} L c_{w} L \frac{N+1}{N 2} \xrightarrow{N \rightarrow \infty} R_{s} C_{w}+r_{w} L c_{w} L \frac{1}{2}=R_{s} C_{w}+R_{w} C_{w} \frac{1}{2}
\end{aligned}
$$

Putting it all together (cont'd)

$$
t_{p} \approx 0.69 R_{s} C_{w}+0.35 R_{w} C_{w}
$$

- The delay introduced by wire resistance will be dominant as soon as

$$
\frac{R_{w} C_{w}}{2} \geq R_{s} C_{w} \stackrel{R_{w}=r_{w} L}{ } L \geq \frac{2 R_{s}}{r_{w}}
$$

- For $\mathrm{R}_{\mathrm{s}}=1 \mathrm{k} \Omega$ driving $1 \mu \mathrm{~m}$ Al1 wire: $\mathrm{L}_{\text {crit }}=2.67 \mathrm{~cm} \rightarrow$ very long

Rules of thumb: RC or just C?

- $R C$ delays should be considered if $t_{p R C}$ is comparable or larger than $\mathrm{t}_{\text {pgate }}$

$$
L_{\text {crit }}=\sqrt{\frac{t_{\text {pgate }}}{0.38 r_{w} c_{w}}}
$$

- RC delays should be considered if rise/fall time at line input is smaller than $R C$ (rise/fall time of the line):

$$
t_{\text {rise }}<R C-\begin{aligned}
& \text { total resistance and } \\
& \text { capacitance of wire }
\end{aligned}
$$

- When not met, change in signal is slower than propagation delay of wire

Distributed RC-line

- Diffusion equation:

$$
r c \frac{\delta V}{\delta t}=\frac{\delta^{2}}{\delta x^{2}} \quad \quad \mathrm{v}_{\mathrm{in}} \cdot \frac{(r, c, L)}{\frac{v^{\mid c}}{=}} \mathrm{v}_{\mathrm{out}}
$$

Step response of RC wire

- Simulated at different spatial locations on wire

If rise/fall times comparable to time-of-flight

(Transmission line)

(Lossy) transmission line

- (Damped) wave propagation equation:

$$
\frac{\delta^{2} V}{\delta x^{2}}=r c \frac{\delta V}{\delta t}+l c \frac{\delta^{2} V}{\delta t^{2}}
$$

When should I care?

- If rise/fall times of signal comparable to time-of-flight, then inductance dominates
- Must consider transmission line effects when signal propagates over wire as a wave
- Transmission line on PCB (low R)
- RLC (lossy) model must be considered for very high-frequency circuits

Lossless transmission line

- If R is small: lossless transmission line

$$
\frac{\delta^{2} V}{\delta x^{2}}=l c \frac{\delta^{2} V}{\delta t^{2}}
$$

- Step input propagates with speed v

Future challenges \& solutions?

- After introduction of copper, not many improvements can be expected
- superconductors, carbon nanotubes, waveguides, optical, wireless?
- Design solutions
- Fat/tall wires
- Bypasses (using better conductors: metal)
- Repeaters (power/area issues)
- Efficient floor-planning
- Networks on chip?

How to reduce wire delays

What can we do?

- Use M repeaters

- Repeaters have delay too: $M=\sqrt{\frac{0.38 r_{w} c_{w} L^{2}}{t_{p, b u f}}}$

What else can we do?

- Use bypasses (e.g., in memories)
- Drive polysilicon wires from both sides

- Use metal bypass (better interconnect material)

And countermeasures!

Capacitive crosstalk

What is capacitive crosstalk?

$$
\Delta V_{Y}=\frac{C_{X Y}}{C_{Y}+C_{X Y}} \Delta V_{X}
$$

Effect on driver node rise time

- Keep time-constant smaller than rise time

Crosstalk and Miller effect

- Neighboring lines switch in opposite direction of victim line
- Delay suddenly depends on activity in neighboring wires!

- Miller effect:
- both terminals of capacitor switched in opposite direction
- effective voltage doubles, requires additional charge

Dealing with capacitive crosstalk

- Avoid floating nodes
- Protect sensitive nodes
- (Maximize rise and fall times)
- Differential signaling
- Do not have parallel wires for long distance
- Use shielding wires
- Use shielding layers

Wire shielding*
Shielding wire

[^0]
Structured interconnect

- Trade-off
- Cross coupling capacitance 40x lower and 2% delay variation
- Increase in area and overall capacitance

Wire resistance affects power supply
IR drop \& voltage variations

Impacts of wire resistance: $\mathrm{V}=\mathrm{IR}$

- Impact of wire resistance usually seen in power distribution (VDD and GND)
- Switching causes voltage variation on supply
- IR drop (from $I^{*} \mathrm{R}=\mathrm{V}$)
- Causes supply voltage variations
- Power supply should minimize...
- ...IR drop and change in current due
- ...current due to simultaneous switching gates

IR switching noise

Inductance effects

- Impact of inductance on supply voltages
- Change in current induces change in voltage
- Longer supply lines have larger inductance L

$$
V=L \frac{\mathrm{~d} i}{\mathrm{~d} t}
$$

Dealing with inductance effects

- Separate power pins for I/O and core
- Multiple VDD and GND supplies (!)
- Careful selection of position of VDD and GND pins on the package
- Increase rise and fall times of off-chip signals (to the maximum allowed)
- Schedule current-consuming transitions
- Add decoupling capacitances on board/chip

Decoupling capacitors

- On board: right next to supply pins
- On chip: under supply straps, near large buffers, in so-called "filler cells"

Happens with high current densities
Electromigration

Electromigration

- Limits DC current density to 0.5 to $1 \mathrm{~mA} / \mu \mathrm{m}$

Electromigration (cont'd)

- Usually happens if device is in use for long time

Finally!!!

Static CMOS circuits

Combinational vs. sequential logic

combinational
sequential

$$
\text { out }=f(i n) \quad \text { out }=f(\text { in, previous in })
$$

- Sequential logic circuit considers input history

Different logic styles

- Numerous circuit/logic styles exist
- Differ in various metrics
- Switching speed (propagation delay)
- Energy dissipation
- Reliability and robustness against interference
- Most widely used one:
what does the C in CMOS stand for?
"Static complementary CMOS"

Static CMOS circuits

- At every point in time (except during switching), gate outputs are connected to either VDD or GND via low-resistance path
- Gate outputs assume always (except during switching) value of a Boolean function
- Dynamic CMOS differs:
- Temporary storage of signal values
- Storage on C of high impedance nodes

Properties of static CMOS

- Just a more complicated CMOS inverter
- Robustness against interference and noise
- Full rail-to-rail swing
- VOH and VOL are VDD and GND, respectively
- Low static power dissipation (leakage only)
- Low output impedance, high input impedance
- Delay function of C_{L} and transistor resistance
- Easier to design large circuits for
- Timing well understood
- Sizing etc. well understood
- Excellent CAD tools support

History

- Invented by Frank M. Wanlass
- Patent in 1963: "Low stand-by power complementary field effect circuitry" (Fairchild)

Static complementary MOS

> PDN connect to GND when $F(\ln 1, \ln 2, \ldots)=0$

PUN and PDN are dual logic networks

Good/bad pull-up/down (remember?)

PUN

PDN

How to construct PUN?

- PMOS in serial/parallel connection
- PMOS switch closes when input is low

$$
X{ }_{X}
$$

- PMOS pass strong 1 but weak 0

How to construct PDN?

- NMOS in serial/parallel connection
- NMOS switch closes when input is high

$$
P
$$

- NMOS pass strong 0 but weak 1

How to construct PDN? (cont'd)

- NMOS devices in series implement NAND

- NMOS in parallel implement NOR

PUN and PDN are dual networks

- De Morgan's laws (theorem)

$$
\begin{aligned}
& \overline{A+B}=\bar{A} \cdot \bar{B} \\
& \overline{A \cdot B}=\bar{A}+\bar{B}
\end{aligned}
$$

- Implications:

Augustus de Morgan 1806-1871

- parallel connection in PUN \rightarrow series connection in PDN
- and vice versa!
important for
the synthesis of
logic gates

Complementary gate is inverting

- CMOS is inverting: NAND, NOR, INV

- Number of transistors to implement N -input logic gate is at least 2 N !

CMOS NAND gate

A	B	out
0	0	1
0	1	1
1	0	1
1	1	0

Remember the symbol:
looks like a D and the
letter D can be found in NAND 4

CMOS NOR gate

A	B	F
0	0	1
0	1	0
1	0	0
1	1	0

$\mathrm{A}-\square=\bar{L} \quad \mathrm{~B}-\square=\overline{A+B}$

only one of inputs
is 1 then output 0

[^0]: Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris

