ECE4740: Digital VLSI Design
 Lecture 7: Power consumption

Practice helps a lot

Sizing examples

Your turn: compute the p-delay

Solution

$$
\begin{array}{ll}
\hline t_{p 1}=t_{p 0}\left(1+\frac{2 C_{g}}{C_{g}}\right)=t_{p 0} 3 & t_{p 3}=t_{p 0}\left(1+\frac{100 \mathrm{fF}}{5 C_{g}}\right)=t_{p 0} 21 \\
\mathrm{C}_{\mathrm{g}}=1 \mathrm{fF} \\
t_{p 2}=t_{p 0}\left(1+\frac{C_{g}+5 C_{g}+10 \mathrm{fF}}{2 C_{g}}\right)=t_{p 0} 9 & \gamma=1 \\
t_{p}=t_{p 0}(3+9+21)=t_{p 0} 33=99 \mathrm{ps} & t_{p 0}=3 p s
\end{array}
$$

Very important

Energy and power consumption

Trends in power consumption

Main sources of power consumption

- Dynamic power consumption
dominating in most
- Charging and discharging capacitors
- Short circuit currents (short between supply rails during switching)
- Static power consumption

- Leakage (leaking diodes and transistors)
already a concern for ultra low-power applications
(e.g., watches, hearing aid devices, sensors)

Dynamic power consumption

Energy consumption $1 \rightarrow 0$

- Energy|stored in capacitor:
$E_{C}=\int_{0}^{\infty} i_{\mathrm{VDD}}(t) v_{\text {out }} \mathrm{d} t=\int_{0}^{\infty} C_{L} \frac{\mathrm{~d} v_{\text {out }}}{\mathrm{d} t} v_{\text {out }} \mathrm{d} t=\int_{0}^{\infty} C_{L} v_{\text {out }} \mathrm{d} v_{\text {out }}=\frac{1}{2} C_{L} V_{\mathrm{DD}}^{2}$
- Energy taken by supply: $E_{\mathrm{VDD}}=C_{L} V_{\mathrm{DD}}^{2}$

Charging and discharging

- Energy stored in $\mathrm{C}_{\mathrm{L}}: E_{C}=\frac{1}{2} C_{L} V_{D D}^{2}$
- Energy taken from supply: $E_{V D D}=C_{L} V_{D D}^{2}$
- Only half* of the energy stored in C_{L} !

Charging and discharging (cont'd)

- Each switching cycle $L \rightarrow H \rightarrow L$ takes a fixed amount of energy: $\quad E_{c y c}=C_{L} V_{D D}^{2}$
- Energy dissipation is independent of
- (size of NMOS/PMOS)
- discharging circuitry (except the capacitance)
- time of switching cycle
- Reducing energy: Reduce C_{L} and $V_{D D}$

Example: compute energy* (0-1-0)

- Miller effect $2 \mathrm{C}_{9}, \mathrm{E}_{4}$ and E_{6} remain same $E=V_{D D}^{2}\left(2 C g+2 C_{g}+8 C_{g}+C_{W}+32 C_{g}+C_{L}\right)$

Dynamic power consumption

- Power = energy / time
- Power consumption: $P_{d y n}=C_{L} V_{D D}^{2} f_{0 \rightarrow 1 \rightarrow 0}$
- Gate switched on and off $f_{0 \rightarrow 1 \rightarrow 0}$ times per second (switching frequency)
- Example: $0.25 \mu \mathrm{~m}$ design with 1 M gates
$-V_{D D}=2.5 \mathrm{~V}, 500 \mathrm{MHz}, C_{L}=15 \mathrm{fF} /$ gate (fan-out 4)
$-46.875 \mu \mathrm{~W}$ per gate $\rightarrow 46.875 \mathrm{~W}$ (!!!)

Dynamic power consumption

- Switching activity: α_{k} \# of switches per cycle

How to reduce dynamic power?

Example revisited

- $0.25 \mu \mathrm{~m}$ CMOS design with 1 M gates
$-V_{D D}=2.5 \mathrm{~V}$,
-500 MHz with 0-1-0 per cycle
$-C_{L}=15 f F /$ gate (fan-out 4)
- Average activity 10%
- $4.6875 \mu \mathrm{~W}$ per gate $\rightarrow 4.6875 \mathrm{~W}$
- Reduce V_{DD} to $1.8 \mathrm{~V} \rightarrow 2.43 \mathrm{~W}$

Compute dynamic power consumption

$$
P_{\text {total }}=V_{D D}^{2} f_{c l k} \sum_{k}^{K} \frac{\alpha_{k}}{2} C_{k}
$$

- Circuit switches once per clock cycle at every node (only for this simple example): $V_{D D}=2 \mathrm{~V} \quad f_{c l k}=1 \mathrm{GHz}$

Solution

- Circuit switches once per clock cycle: $\alpha_{k}=1$

$$
P_{\text {total }}=2^{2} \cdot 1 \mathrm{GHz} \cdot \frac{1}{2} \cdot 128 \mathrm{fF}=256 \mu \mathrm{~W}
$$

Oh wait, sizing?!

- Sizing can reduce propagation delay
- But this is not free in terms of power!

$$
C_{t o t}=2\left(C_{g}+f C_{g}+f^{2} C_{g}+\ldots+f^{N} C_{g}\right)
$$

- Not easy to size inverters for min. power

Another source of dynamic power consumption
Crossover/direct-path currents

Crossover or direct-path currents

- Finite slope of input signal causes direct path between $V_{D D}$ and GND for short time

Direct path/crossover energy

- Energy consumed per switching 0-1-0:

Direct path/crossover power

- Average power consumption:

$$
P_{d p}=V_{D D} I_{p e a k} t_{s c} f
$$

- Peak current is determined by
- saturation current:
- depends on transistor size
- technology
- temperature
- ratio between input and output slopes $\left(C_{L}\right)$

Reduce direct-path currents

$$
P_{d p}=V_{D D} I_{p e a k} t_{s c} f
$$

$$
t_{s c} \approx \frac{\left(V_{D D}-2 V_{T}\right)}{V_{D D}} \frac{t_{r}}{0.8}
$$

- Reduce W/L
- Reduce $V_{D D}$
- Make circuit switch fast: reduce t_{r} and t_{f}

Approximation for 0-1-0 cycle

$$
E_{d p} \approx \frac{\beta}{12}\left(V_{D D}-2 V_{T}\right)^{2} t_{r}
$$

- symmetry of β_{n} and β_{n}, and threshold voltages
- no output load... $C_{L}=0$
- Input and output voltage rise linearly with ramp time $t_{r a}$
- Energy increases in $V_{D D}$ squared!

Impact of input/output slopes

- Large load C_{L}
- Output fall time larger than input rise time
- Transistors off before output changed
- Small load C_{L}
- Output fall time smaller than input rise time
- Both transistors conducting for long time

$I_{\text {peak }}$ as function of C_{L}

Image adapted from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

