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ECE4740: 
Digital VLSI Design

Lecture 6: Inverter sizing
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Brief timing recap

Very important concepts
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Rise/fall times & propagation delay
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First-order analysis: extract Req

• Approximations required as CL(v) and i(v) 
are non-linear and voltage v dependent

197

Use RC circuit to model tpHL

• Decay time from 100% to 50% is

• Same can be obtained for low-to-high time

• Propagation delay:  

198
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Inverter sizing

Increase both Wn and Wp!
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Split load capacitance CL

• Just rewrite as:

200

intrinsic output 
capacitances from 
self-loading etc. 

(diffusion, Miller)

extrinsic 
capacitances: 

fan-out and wiring

assume that NMOS and PMOS are sized 
such that rise and fall times are equivalent

effect on propagation delay caused 
by extrinsic capacitances

“unloaded” propagation delay
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Impact of sizing factor S

• Intrinsic capacitances:

• Gate resistance:

• Leads to: 

201

capacitance of a 
unit-sized device

resistance of a 
unit-sized device

An equivalent view

• Propagation delay:

• Simplifying:  
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What exactly is “S”?

• The sizing factor is how much larger you 
make the widths of NMOS and PMOS

– You usually keep the PMOS:NMOS ratio fixed

– Gate lengths L usually kept at the minimum
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Impact of sizing S (cont’d)

• Intrinsic delay of gate independent of S

– no load means no effect on propagation delay

• Making S large, eliminates effect of load

– at the cost of inverter area!

– and it will affect the load of the preceding logic!
204

intrinsic delay 
of inverter: tp0
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Example: Sizing impact* on tp
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self loading 
(intrinsic capacitance 
dominates)  not 
much gain anymore

large improvement 
already achieved for S=5

*for a fixed load!

Image taken from: 

http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f01/Notes/chapter5.pdf

Sizing a chain of inverters

A more relevant case

206
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Sizing a chain of inverters

• For isolated inverter: Increasing S reduces  
delay but also increases input capacitance

– not very useful in practice!

• More relevant case: chain of inverters:

207

It’s a trade-off

• Sizing up an inverter reduces delay, but will 
also increase its input capacitance!

• Intrinsic capacitance Cint proportional to 
gate capacitance:

• is technology dependent (and about 1)

208
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The effective fan-out f

• Delay of an inverter: a function of the ratio 
between external load and its input cap!

• Effective fan out:

• The goal is to minimize the delay through 
the entire inverter chain

209

Chain of N inverters

• Delay of jth inverter:

• Total delay is:

• Assume: 

• Optimality conditions:
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Image adapted from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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Optimum size of inverter

• Optimum size of each inverter is 
geometric mean of neighbor’s sizes!

211

Implications

• Each inverter should be sized up by same 
factor fopt compared to preceding gate

212

WHY?
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Implications (cont’d)

• With 

the minimum (total) delay is

• Simply a result of

213

Example: simple chain

• F=CL/C1 has to be evenly distributed 
across N=3 stages: 

214

CL= 8 C1

in
out

C1
1 f f2
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Optimal number of stages Nopt

• There is a trade-off
– too many stages: intrinsic delay dominates

– too few stages: effective fan-out dominates

• Has no closed-form solution 

• Solution is about 3.6 for 

215

Assume no self loading

• Implies

• Solve 

216

• Leads to so-called exponential horn
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Optimum effective fan-out fopt

• Choosing f larger than optimum has little 
effect on delay and reduces # stages
– f=4 is common practice for
– too many stages has negative impact on delay
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Image taken from: http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f01/Notes/chapter5.pdf

Example: buffer design
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Example: size the buffers

219

CL=64C1
C1

always 
Cext/Cint

Example: size the buffers (cont’d)

220

CL=64C1
C1

buffer 2 is 3.6x larger 
than buffer 1

buffer 3 is 8.8x larger 
than buffer 1
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Delay minimization

Examples

221

Two cases for delay minimization

• Known number of gates N, unknown f
– Find optimal f such that F=fN

• Known fopt, unknown N
– Find N with f as close as possible to fopt
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Image adapted from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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Example: propagation delay tp
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