ECE4740: Digital VLSI Design

Lecture 5: Dynamic behavior of inverter

RC circuits ahead!

Dynamic behavior

Dynamic behavior: intuition

- $\mathrm{V}_{\text {out }}(\mathrm{t})$ depends on $\tau=R_{o n} C_{\text {load }}$

$C_{\text {load }}$ depends on fan-in and fan-out

- Fan-out: number of load gates connected to output of driving gate
- All wiring and total input
 capacitance determine $\mathrm{C}_{\text {load }}$
- Fan-in: number of inputs to gate

Rise and fall times*

*always measured at the output

maximum time it takes for output to cross 50\% voltage

Contamination delay or min-delay

Electronic glitch

- Undesired transition that occurs before the signal settles to intended value
- Glitches can go from rail to rail
- Caused by logic (can be prevented)

RC model for dynamic behavior*

- First-order RC model
- Step function $\mathrm{V}_{\mathrm{SS}} \rightarrow \mathrm{V}_{\mathrm{DD}}$

$$
V_{\text {out }}(t)=V_{d d}\left(1-e^{-t / \tau}\right) \quad \tau=R C
$$

Reality is more complicated

- Parasitic capacitances that affect transient behavior of cascaded inverter pair:

Idea: lump everything into $C_{\text {load }}$

Lump everything into $C_{\text {load }}$

- Use the so-called Miller effect for $C_{g d 1,2}$
- Linearize all non-linear capacitances

Miller capacitance*

- Miller effect
- Capacitor experiencing identical but opposite voltage swings at both its terminals
- Replace with cap to GND of twice the C

*Miller effect depends on gain: $C_{M}=(1-\mathrm{g}) * C_{\text {in }}$ (we assume $\mathrm{g}=-1$)

Lumped load capacitance

$C_{\text {load }}=2 C_{g d 1}+2 C_{g d 2}+C_{d b 1}+C_{d b 2}+C_{g 3}+C_{g 4}+C_{w}$

- Only consider capacitances that switch!

Will determine maximum clock frequency

Propagation delay

First-order analysis

- Exact computation difficult as $\mathrm{C}_{\mathrm{L}}(\mathrm{v})$ and $i(v)$ are non-linear in voltage $v(t)$

Computing the average on resistance

- Integrate over time:

$$
R_{\mathrm{eq}}=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} R_{\mathrm{on}}(t) \mathrm{d} t
$$

- Resistance is equal to: $R_{\mathrm{on}}(t)=\frac{V_{D S}(t)}{I_{D S}(t)}$
- But we are lazy and approximate it as:

$$
R_{\mathrm{eq}} \approx \frac{1}{2}\left(R_{\mathrm{on}}\left(t_{1}\right)+R_{\mathrm{on}}\left(t_{2}\right)\right)
$$

Simple approximation of $R_{\text {eq }}$

- Discharge of capacitor from V_{DD} to $G N D$
- Propagation delay: 50% discharge $=\mathrm{V}_{\mathrm{DD}} / 2$
- Idea: average resistance at endpoints

Intuition on $\mathrm{R}_{\text {eq }}$

$$
\begin{aligned}
& R_{e q} \approx \frac{3}{4} \frac{V_{D D}}{I_{D S A T n}}\left(1-\frac{5}{6} \lambda V_{D D}\right) \\
& I_{D S A T n}=\mu_{n} C_{o x} \frac{W_{n}}{L_{n}}\left(\left(V_{D D}-V_{T n}\right) V_{D S A T n}-\frac{V_{D S A T n}^{2}}{2}\right)
\end{aligned}
$$

- Increasing width W reduces $R_{\text {eq }}$
- Increasing length L increases $R_{\text {eq }}$
- If $\mathrm{V}_{\mathrm{DD}} \rightarrow \mathrm{V}_{\mathrm{Tn}}$ then $\mathrm{R}_{\text {eq }}$ increases a lot!
- For $V_{D D} \gg V_{T n}+V_{D S A T} / 2$ resistance is almost independent of V_{DD}

Use RC circuit to model $\mathrm{t}_{\mathrm{pHL}} / \mathrm{t}_{\mathrm{pLH}}$

- Decay time from 100% to 50% is

$$
t_{p H L}=\ln (2) R_{e \oplus(} C_{L} \approx 0.69 R_{e \oplus(n)} C_{L}
$$

any deas
why?

- Same can be obtained for low-to-high time

$$
t_{p L H}=\ln (2) R_{e q ழ} C_{L} \approx 0.69 R_{e q \models} C_{L}
$$

- Propagation delay:

$$
t_{p}=\frac{t_{p H L}+t_{p L H}}{2} \approx 0.69 C_{L}\left(\frac{R_{e \varrho(\square)}+R_{e \varrho(D)}}{2}\right)
$$

Real inverter transient response

From simulation: $\mathrm{t}_{\mathrm{pHL}}=39.9 \mathrm{ps}$ and $\mathrm{t}_{\mathrm{pLH}}=31.7 \mathrm{ps}$ for $0.25 \mu \mathrm{~m}$ process

Propagation delay t_{p} vs. $V_{D D}$

Example: Intel's speed step tech.

- Adjust voltage and clock frequency to operation conditions
- Used in virtually all processors nowadays
- Why would someone do that?

Ways to reduce $\mathrm{t}_{\mathrm{pHL}}$

- Increase V_{DD} : trade energy vs. performance
- Assume

$$
\begin{gathered}
V_{D D} \gg V_{T n}+V_{D S A T} / 2 \\
t_{p H L} \approx 0.52 \frac{C_{L}}{\left(W_{n} / L_{n}\right) \mu_{n} C_{o x} V_{D S A T n}}
\end{gathered}
$$

- Reduce C_{L} : fanout, interconnect, $C_{D S}$
- Increase W/L ratio: careful with self loading

Another way to reduce $\mathrm{t}_{\mathrm{pHL}}$

- Carrier mobility μ_{n} depends on temperature
- Again, assume $V_{D D} \gg V_{T n}+V_{D S A T} / 2$

$$
t_{p H L} \approx 0.52 \frac{C_{L}}{\left(W_{n} / L_{n}\right) \mu_{n} C_{o x} V_{D S A T n}}
$$

- For electrons in Si, we have $\mu_{n} \propto T^{-2.4}$
- Increasing the temperature reduces carrier mobility*, which increases propagation delay
*due to increased scattering; for holes we have $\mu_{p} \propto T^{-2.2}$

Cooling makes CMOS faster

- Known to gaming enthusiasts who overclock their CPUs \rightarrow liquid cooling

CPU Frequency World Record ranking on 3 February 2018

> nominal clock is 4.3 GHz in turbo mode

RANK	SCORE	USER	PROCESSOR	COOLING
\#1	8722.78 MHz	\#The Stilt	AMD FX-8370 @ 8722.8 MHz	Liquid Nitrogen
\#2	8709 mhz	AndreYang	AMD FX-8150 @ 8709 MHz	Liquid Nitrogen
\#3	8659.64 mhz	Smoke	AMD FX-8370 @ 8659.6 MHz	Liquid Nitrogen
\#4	8615.39 mhz	slamms	AMD FX-8350 @ 8615.4 MHz	Liquid Nitrogen
\#5	8543.71 mhz	wytiwx	Intel Celeron D $352 @ 8543.7 \mathrm{MHz}$	Liquid Nitrogen

We can make gates faster
Minimizing the propagation delay

PMOS/NMOS ratio

- One approach: Size PMOS and NMOS so that $\mathrm{R}_{\text {eq }}$'s match (ratio of about 2-to-3)
- leads to symmetric VTC
- optimizes noise margins
- leads to equal $t_{p H L}$ and $t_{p L H}$
- How about minimizing t_{p} ?

Minimizing t_{p}

- Widening PMOS
- reduces $R_{\text {eqp }}$, which reduces $t_{\text {pLH }}$
- also increases parasitic C_{L}, which increases $t_{\text {pHL }}$
- There is an optimal PMOS width!

Minimizing t_{p} (cont'd)

$$
C_{L}=\left(C_{d p 1}+C_{d n 1}\right)+C_{W}+\left(C_{g p 2}+C_{g n 2}\right)
$$

- Assume PMOS β times larger than NMOS
$C_{d p 1} \approx \beta C_{d n 1} \quad C_{g p 2} \approx \beta C_{g n 2} \quad \beta=\frac{(W / L)_{p}}{(W / L)_{n}}$
- Propagation delay becomes

$$
t_{p} \approx \frac{0.69}{2}\left((1+\beta)\left(C_{d n 1}+C_{g n 2}\right)+C_{W}\right)\left(R_{e q n}+\frac{R_{e q p}}{\beta}\right)
$$

After some math...

- Optimal value of β is

$$
\begin{aligned}
& \beta_{\text {opt }}=\sqrt{\left(\frac{R_{\text {eqp }}}{R_{\text {eqn }}}\right)\left(1+\frac{C_{W}}{C_{d n 1}+C_{g n 2}}\right)} \\
& \begin{array}{l}
\text { of symetric } \\
\text { if } \mathrm{C}_{W} \text { small. then you can ignore this } \\
\text { if } \mathrm{C}_{\mathrm{w}} \text { large, then larger PMOS needed }
\end{array} \\
& \text { ined resistors }
\end{aligned}
$$

- Interesting: smaller PMOS reduces t_{p} (at the cost of VTC symmetry and noise margin)

Example

