
6/8/2018

1

ECE4740: 
Digital VLSI Design

Lecture 2: Diodes and MOSFET

39

Goals for next few lectures

• Device basics: 

– Diode

– MOS(FET) transistors

• Origin of VT, square law, 
regions of operation

• Able to quickly understand
such circuits:

VDD

VR

VDD

VS
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Recap: End of Moore’s Law?
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Image taken from: http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law
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The diode

Device basics
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Basics: pn-junction diode

• Simplest of the semiconductor devices

• Mostly occur as parasitic elements

• Used to protect chips against electrostatic 
discharge (ESD)

+

-

VD

diode symbol

p

n

A

B

A

B

one-dimensional
representation

doped with 
donors (-, 
electrons,
n-type)

doped with 
acceptors (+, 
holes, p-type)
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(a) Current flow.

(b) Charge density.

(c) Electric field.

(d) Electrostatic
potential.

ϕ0

built-in 
potential 
(barrier)

depletion region

• Forward-bias lowers barrier; carriers can flow across junction
• Reverse-bias raises barrier; diode becomes non-conducting
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Image taken from: https://archive.cnx.org/contents/432561b3-5dbf-4142-b9d2-60c08c3a5cee@1/sspd-chapter-

3-solid-state-diode-physics



6/8/2018

4

What is it doing?

• Diode allows current in forward direction

• Blocks current in reverse direction

45

Image taken from: https://www.roadtrafficsigns.com/one-way-signs

Shockley (ideal) diode equation

• Saturation current is proportional to the 
area of the diode: Roughly 17e-17A/µm2

thermal voltage

(usually at 300K)

saturation current

~ 1e-14A

ideality factor 

(emission coefficient) 

n=1….2
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Model for manual analysis

• Model for fully conducting diode

• Non-conducting diode is simply an open circuit

• In digital ICs, diodes are usually reverse biased!

VD

+

–

+

–
VDon

ID
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Secondary effects

• Serial resistivity (1Ω-100Ω)

• Junction capacitance: one way to build 
(small) capacitors for analog circuits

• Temperature dependence (ϕT and IS)

• Avalanche breakdown
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Example: Don’t destroy the LED!

• Size the resistor RD!

– Use simple model with VDon=0.7V

– Use Shockley model

+

-

VS=9V

RD=?

ID=16mA

LED parameters:

• IS=10-18A

• n=1.8

• ϕT=26mV @ 300K

49
Image taken from: https://docs.onion.io/omega2-starter-kit/circuit-diagram-crash-course.html

MOS(FET) transistors

Basic but important devices
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MOSFET transistor

• Metal-oxide-semiconductor (MOS)

• Field-effect transistor (FET)

IT’S 

A 

SWITCH!
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VGS

G = gate, S = source, D = drain, B = bulk

Image taken from: https://www.rollingstone.com/movies/lists/50-best-star-wars-characters-

20151203/admiral-ackbar-20151203

MOSFETs are 4-terminal devices

or PMOS

or NMOS

• In most cases VBS=0; can be used to alter VT
52
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MOSFET as switches

RBIG

VOUT

VIN

VDD

• What happens if VIN=0?

• What happens if VIN=VDD?
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MOSFET as switches (cont’d)
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What is going on here?

RBIG

VOUT

VDD

VDD

=VDD-VT
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• Assume that NMOS is on

• Assume that VOUT=VDD

• Then, node S would be VDD

• Hence, VGS=0  NMOS off!

• If, however, VOUT=VDD-VT, 
then transistor is on

• VDD-VT is highest voltage for 
which that transistor can be on

G
S

D

Important to remember

• NFET is a bad pull up (max VDD-VT)

• PFET is a bad pull down (min GND+|VT|)

RBIG

VOUT

VDD

VDD

=VDD-VT

If Vout would be 

VDD, then VGS<VT

and hence, NFET 

would be off!
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3-D view: NMOS

• Key design parameters: W = width; L = length

doped with 
acceptor ions 
(e.g., Boron)

holes are 
majority carriers

doped with
donor ions 

(e.g., Arsenic)
electrons are 

majority carriers

polysilicon gate

SiO2 gate oxide 
(insulator)
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Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Harris, Weste

Depletion region: NMOS

• Situation: VS=VD=VB=0 and VGS>0

n+n+

p-substrate

DS

G

B

VGS

+

-

Depletion

Region

n-channel

SiO2 gate oxide 
(insulator)

body (usually VSS)

n-channel (-)
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Threshold voltage VT

• Increasing gate voltage VGS

– n-channel forms below gate dielectric 

– onset of strong inversion

– additional electrons from n+ source region

• Happens if VGS>VT

Fermi potential
(influenced by doping)

empirical parameter 
for VSB=0
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Bulk voltage affects VT: Body effect

• Increasing VB?

• Decreasing VB?

called body-effect
coefficient: γ≈0.4V
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Operation regions

MOSFET model
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Current-voltage characteristics
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Cutoff region: VGS<VT

• If VGS<VT, then FET is (almost) off

• Ideally, open circuit between drain 

and source and no current flows

• IDS≈ 0A independent of VDS
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Current-voltage characteristics

quadratic
relationship
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Resistive (or linear) operation region

• For small VDS  IDS is linear in VDS

Assume: 
• VGS-VT>VDS

• L large (>0.25µm)

65

(Origin of IDS)

• Charge on a capacitor:

• Charge on channel:

• Size of capacitor:

• Charge in slice of channel:

• Current
66
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(Origin of IDS)

n+n+

p-substrate

D

S

G

B

VGS

xL

V(x)
+–

VDS

ID

voltage in channel V(x)
is linear
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(Origin of IDS)

• Current through channel:

• Carrier velocity:

• Drain Current:

68
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Current-voltage characteristics

quadratic
relationship
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Resistive saturation

VDS = VGS - VT
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Saturation region

• Ideally, current no longer a function of VDS

Assume: 
• VGS-VT<VDS

• L large (>0.25µm)
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What happens in the channel?

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT
+-

Pinch-off region

VGS-VT<VDS

VDS(sat) = VGS-VT
71

Channel-length modulation

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT
+-

∆L: channel-length 
modulation

VGS-VT<VDS

• Effective channel length is modulated by VDS

• Increasing VDS reduces effective length

∆L
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Saturation region revisited

• λ is an empirical parameter: 

– name: channel-length modulation

– inversely proportional to channel length L

Assume: 
• VGS-VT<VDS

• L large (>0.25µm)

73
Image taken from: http://knowyourmeme.com/memes/half-life-3-confirmed

Current-voltage characteristics
of long-channel devices

NMOS PMOS

L>0.25µm

74Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Harris, Weste


