ECE4740: Digital VLSI Design

Lecture 1: Introduction

What is digital VLSI

1T (1948)

6T (1960s)

1kT (1971)

1MT (1989)

- VLSI = very large scale integration
- Idea: Implement thousands (...I mean billions) of transistors on a single chip
Images taken from: http://www.computerhistory.org/collections/catalog/102618871,
http://gecko54000.free.fr/?documentations=1989-04 Intel 80486

First electronic computer: ENIAC

- ENIAC = Electronic Numerical Integrator And Computer
- 17,468 vacuum tubes
- Unreliable (longest period without failure: 116h)
- Excessive power (150kW)
- Not scalable

First computer bug

First "integrated" circuit

- Invented by Jack Kilby in 1959 (TI)
- Simple analog oscillator on a single chip
- Received Nobel Prize
- Scalable!

Modern digital VLSI

1BT (2002)

- Semiconductors account for about 0.5\% of the world gross domestic product (GDP)
- Has much larger impact on world economy!

Large chips

Intel Xeon Phi processor 5B T, 62-cores, 22nm

Xbox One SOC
5B T, Microsoft/AMD, 28nm

Images taken from: https://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-knights-landing-cpu-for-exascale-supercomputing, https://www.extremetech.com/gaming/171735-xbox-one-apu-reverse-engineered-reveals-sram-as-the-reason-for-small-gpu

Larger chips

Oracle SPARC M7 processor
32 cores, about 10B T, 16nm FinFET
Image taken from: https://www.enterprisetech.com/2014/08/13/oracle-cranks-cores-32-sparc-m7-chip/

Even larger chips

NVIDIA Kepler GK110 GPU
7.08B T, 28nm

Xilınx Virtex Ultrascale FPGA

Largest chips today: Memories

Samsung 128Gb DDR4 DIMM about 140B T, 30nm

Do you own VLSI?

- Which devices rely on VLSI?
- What tasks are VLSI circuits doing?
- Why do you think is VLSI used?

VLSI is (almost) everywhere!

high throughput

VLSI comes in different flavors

- Application specific integrated circuits
- Programmable logic (e.g., FPGAs)
- Dedicated processors (e.g., DSPs, GPUs)
- General-purpose processors

Images taken from: https://spectrum.ieee.org/tech-history/silicon-revolution/chip-hall-of-fame-xilinx-xc2064-fpga, http://www.cpu-world.com/forum/viewtopic.php?p=178537, https://phys.org/news/2010-03-intel-xeon-center-processor.html

Prerequisites

- ECE2300 or solid digital logic understanding
- ECE3150 or solid understanding of CMOS
- Key concepts from ECE3150 will be recovered in ECE4740
- Remember basic RLC circuits!!!

Primary textbook

Neil E. Weste
David M. Harris

CMOS VLSI Design:
A Circuits and
Systems
Perspective

Optional textbooks

- For those who want to learn more (details)
- For those who plan to do a PhD in VLSI

DO NOT CHEAT!

Cornell Code of Academic Integrity:
http://cuinfo.cornell.edu/Academic/AIC.html

What is ECE4740 all about?
Course outline and goals

Course overview

\section*{| 0 |
| :--- |
| 0 |
| 0 |
| +1 |
| 0 |
| \square |
| \square |
| 1 |}

Topics covered

Standard-cell design
Full-custom layout
Logic families
Combinational and sequential logic
Timing \& clock distribution
Computer arithmetic
Architecture transforms
Memories (DRAM/SRAM)
Low-power design strategies

What is digital VLSI?

- Digital integrated circuits: many transistors (thousands to billions) on a single chip
- CMOS = complementary metal oxide

Why should I study VLSI?

O-S-D Marketshares versus Major IC Segments (2008 Semiconductor Market, \$261.8 Billion)

Source: IC Insights
\qquad
Market for ICs
Communications Becoming Large

Moore's Law (1965)

- \# of transistors doubdles every 18 months

Gordon Moore

Will Moore's Law end?

- 10 nm with standard silicon technology seems to be the end*

Shrinking chips
Number and length of transistors bought per \$

*for now Source: Linley Group

Evolution of DRAM capacity

Impressive "example:" Flash memory

What's interesting about this?
In 2017, we had 400GB!
Image taken from: https://www.gsgtelco.com/2014/05/02/the-leap-in-memory-technology-from-2005-to2014/

Kryder's Law

- 10 years have about 6.66×18 months
- Moore's law only predicts $2^{\wedge}(6.66) \approx 101$
- But storage density increased $1000 x$ in 1

Can we master these challenges?

- Moore's Law is slowing down, demands for more data and processing still increasing
- Need to design increasingly complex ICs but we also have to ensure they work 100%
- Require denser and faster memories
- Circuits must be low-power
- This class will teach you the foundations to find solutions to these challenges!

Course goals

- Know how to design basic building blocks
- Learn to develop digital ICs across several layers of hierarchy via abstraction
- Hands-on experience with state-of-the-art software: Cadence Virtuoso
- Develop strong intuition
- Most important: enjoy VLSI design!

Main focus: Full-custom design

- High-performance or "high-volume" ICs
- Example: flagship Intel microprocessors
- Fundamentals for computer architects
- Used in data converters (DACs/ADCs)
- RF engineers

Advantages and disadvantages

- Full-custom design gives full control over all possible design parameters:
- (potentially) lower power
- (potentially) lower area
- (potentially) higher throughput
- (potentially) higher yield
- (potentially) more fun
- Drawback:
- A lot of (tedious) work
- Difficult to quickly develop large designs
- Design tools are getting better and better

Why aren't we just using CAD tools?

- Ex.: Synposys DC enables the design of high-performance complex VLSI designs
- You write Verilog/VHDL and compile
- Results are hard to beat by hand (especially for inexperienced users)

Even with such tools, you must
understand the fundamentals

Why? - an academic perspective

- Top journals/conferences in solid-state circuits and VLSI require fabricated chips
- ISSCC, the flagship conference, favors designs with transistor-level schematics

There are different abstraction layers

schematic view
layout view
 logic symbol truth table

- We are going to use all these abstractions

Wait, there is more!

- Voltage transfer characteristic (VTC)

MOS operating regimes

MOS operating regimes (cont'd)

