
José F. Martínez

ECE3140 / CS3420 
Embedded Systems

Real-Time Scheduling Algorithms 
for Periodic Tasks



Periodic Scheduling 2ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Outline: Scheduling for Periodic Tasks
Scheduling algorithms for periodic real-time tasks

§ Review: periodic tasks

§ Timeline scheduling

§ Rate Monotonic (RM) scheduling
§ Algorithm
§ Schedulability analysis

§ RM vs. EDF

§ Reference
§ Chapter 4, “Hard Real-Time Computing Systems Predictable 

Scheduling Algorithms and Applications” by Giorgio C. Buttazzo
(Free electronic copy through Cornell library)



Periodic Scheduling 3ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Periodic Tasks
§ Periodic tasks are those that have jobs that repeat at a 

regular interval in time

§ For each periodic task τ":
§ Each job τ",$ is activated at 𝑟",$ = Φ" + 𝑘 − 1 𝑇"

§ Φ" represents the phase of a task: 𝑟",$
§ Each job τ",$ has a deadline 𝑑",$ = 𝑟",$ + 𝐷"

Source: ‘Hard Real-Time Computing Systems’ by Buttazzo



Periodic Scheduling 4ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Example: Video Streaming

§ Multiple periodic tasks with different periods need to run

§ Task 1: download a video stream from a server

§ Task 2: decode and output video
§ H.264: typically, 30 frames per second

§ Task 3: decode and output audio
§ AAC: sampling frequency from 8 to 96kHz



Periodic Scheduling 5ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Assumptions
§ A1. The instances of a periodic task 𝜏" are regularly activated at a 

constant rate. The interval 𝑇" between two consecutive activations 
is the period of the task.

§ A2. All instances of a periodic task 𝜏" have the same worst-case 
execution time 𝐶".

§ A3. All instances of a periodic task 𝜏" have the same relative 
deadline 𝐷", which is equal to the period 𝑇".

§ A4. All tasks in Γ are independent; that is, there are no 
precedence relations and no resource constraints.

§ A5. No task can suspend itself, for example on I/O operations.

§ A6. All overheads in the kernel are assumed to be zero.



Periodic Scheduling 6ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Timeline Scheduling
§ Classic technique, also called cyclic scheduling

§ Used for decades in military systems, navigation, and 
monitoring

§ Examples
§ Air traffic control
§ Boeing 777
§ Space shuttle



Periodic Scheduling 7ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Timeline Scheduling: Approach

§ The time axis is divided into intervals of equal length, called 
time slots or minor cycles

§ Each task is statically allocated to a time slot in order to 
meet its desired request rate
§ Multiple tasks can be allocated to one time slot as long as their 

combined execution time is less than the time slot

§ Timers are used to activate execution in each slot
§ The schedule is hardcoded in a program



Periodic Scheduling 8ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Timeline Scheduling: Example

§ Minor cycle: Δ = GCD of the periods = 25ms
§ Major cycle: T = LCM of the periods = 100ms

§ The minimum interval after which the schedule repeats itself

Task 𝑻𝒊 𝑪𝒊
A 25ms 10ms
B 50ms 10ms
C 100ms 10ms



Periodic Scheduling 9ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Implementation

Source: Lecture slides by G. Buttazzo



Periodic Scheduling 10ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Advantages and Disadvantages
§ Advantages

§ Simple implementation (no real-time OS is required)
§ Low run-time overhead (no scheduler)
§ Some jitter can be tolerated

§ Disadvantages
§ Not robust when a task overruns and does not finish by 

the end of a time slot
§ Difficult to expand the schedule
§ Not easy to handle aperiodic activities



Periodic Scheduling 11ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Overrun and Expandibility
§ What happens if we have an overrun?

§ If the task continues, there can be a domino effect
§ If the task is aborted, the system could be in an inconsistent state

§ If one or more tasks need to be updated, we may need to 
re-design the whole schedule

§ Example: B is updated to be longer
§ Common approach: split the task into two sub-tasks



Periodic Scheduling 12ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Frequency Change Example
§ If the frequency of some task is changed, the impact can be 

even more significant

§ Original
§ Minor cycle: Δ = 25ms
§ Major cycle: 𝑇 = 100ms

§ New
§ Minor cycle: Δ = 5ms
§ Major cycle: 𝑇 = 200ms

Task 𝑻𝒊 New 𝑻𝒊 𝑪𝒊
A 25ms 25ms 10ms
B 50ms 40ms 10ms
C 100ms 100ms 10ms



Periodic Scheduling 13ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Recap: Rate Monotonic Scheduling
§ Execute tasks with priority scheduling

§ Each task is assigned a fixed priority proportional to its rate

𝑝" ∝
1
𝑇"

§ Verify the feasibility of the schedule using analytical 
techniques

𝜏9

𝜏:



Periodic Scheduling 14ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

How to Determine Schedulability?

§ Each task uses the processor for a fraction of time:

𝑈" =
𝐶"
𝑇"

§ The total processor utilization is given by:

𝑈<=> =?
"

𝑈"

§ 𝑈<=> measures the processor load

§ If 𝑈<=> > 1, the processor is overloaded and the tasks set 
cannot be all scheduled



Periodic Scheduling 15ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Infeasible RM Schedule

§ 𝑈<=> < 1 does not necessarily mean that there exists a 
feasible schedule

§ Here, 𝑈<=> < 1 but the RM schedule is infeasible

§ 𝑈9 =
B
C , 𝑈: =

D
E

𝜏9

𝜏:



Periodic Scheduling 16ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Utilization Upper Bound?
§ Increasing 𝐶9 or 𝐶: causes missed deadlines (𝑈<=> = 0.833)

§ Here 𝑈<=> = 1 and the schedule is feasible.

𝜏9

𝜏:

𝜏9

𝜏:



Periodic Scheduling 17ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

A Sufficient Condition

Liu/Layland result (1973): for n periodic tasks, if

𝑈<=> ≤ 𝑛(2
9
O − 1)

then RM will produce a feasible schedule

§ In the limit 𝑛 → ∞, RHS is ln 2 (~69%)

§ RM may still be able to produce a feasible schedule for a set 
of periodic tasks with a higher utilization
§ Not a necessary condition



Periodic Scheduling 18ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Optimality of RM
RM is optimal among all fixed priority algorithms

§ If there exists a fixed priority assignment which leads to a 
feasible schedule, then RM produces a feasible schedule

§ If a task set is not schedulable by RM, then it cannot be 
scheduled by any fixed priority assignment



Periodic Scheduling 19ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Optimality of EDF
EDF is optimal among all algorithms

§ If there exists a feasible schedule for a task set, then EDF 
will generate a feasible schedule

§ A set of n periodic tasks is schedulable by the EDF 
algorithm if and only if

𝑈<=> =?
"T9

O

𝑈" ≤ 1



Periodic Scheduling 20ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

RM vs. EDF
§ RM is easy to implement on a commercial kernel with a priority 

scheduler, but no support for periods or deadlines
§ RM: simply assign a fixed priority to each task
§ EDF: requires dynamically adjusting the priority. Mapping from a 

deadline to a priority also adds complexity

§ If implemented in the kernel, both RM and EDF have similar 
implementation complexity
§ RM can be implemented with a smaller number of queues if a small 

number of priority levels are sufficient

§ EDF often has lower run-time overhead than RM
§ EDF needs to re-assign the deadline on each job (higher scheduler 

overhead), but usually leads to less context switches

§ If a system becomes overloaded, any task except for the highest 
priority one may miss a deadline in RM
§ In EDF, any task may miss a deadline


