ECE3140 / CS3420 Embedded Systems

# (Aperiodic) Real-Time Scheduling Algorithms

José F. Martínez



## **Outline: Real-Time Scheduling**

Scheduling algorithms for real-time systems

- Real-time scheduling problem
- Maximum lateness (metric)
- Earliest Due Date (EDD)
- Earliest Deadline First (EDF)
- Reference
  - Chapter 3, "Hard Real-Time Computing Systems Predictable Scheduling Algorithms and Applications" by Giorgio C. Buttazzo (Free electronic copy through Cornell library)

## **Real-Time Scheduling**

- Goal: schedule tasks (jobs) to meet deadlines
- Since the goal is to meet deadlines, we should be using knowledge of deadlines to determine the schedule
  - Absolute deadlines (d<sub>i</sub>)
  - Relative deadlines  $(D_i = d_i r_i)$
- Conventional scheduling algorithms are not suitable





- Implication for the scheduling
  - $L_i \leq 0$  means that a task finishes before the deadline

### **Maximum Lateness**



#### • $L_{max} \leq 0$ means that no task misses its deadline

ECE 3140 / CS 3420 - Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

RT Scheduling 5

## **Airport Security Line?**



## **Course Assignments?**

#### ECE3140/CS3420 Assignments

| Assignment    | Time | Due  | Criticality |  |
|---------------|------|------|-------------|--|
| Pre-proposal  | 2    | 4/17 | Med         |  |
| Lab5 plan     | 1    | 4/18 | Med         |  |
| Problem set 3 | 4    | 4/20 | Med         |  |
| Full proposal | 8    | 4/26 | High        |  |
| Lab5          | 10   | 4/27 | High        |  |
| Final project | 30   | 5/17 | High        |  |

#### CS3110 Assignments

| Assignment     | Time | Due  | Criticality |  |
|----------------|------|------|-------------|--|
| A4:JoCalf      | 10   | 4/18 | High        |  |
| Prototype      | 5    | 5/1  | Med         |  |
| Implementation | 15   | 5/5  | Med         |  |
| Demo           | 20   | 5/18 | High        |  |

| April 2018 |    |    |    |    | <  | >  |
|------------|----|----|----|----|----|----|
| s          | м  | т  | w  | т  | F  | s  |
| 1          | 2  | 3  | 4  | 5  | 6  | 7  |
| 8          | 9  | 10 | 11 | 12 | 13 | 14 |
| 15         | 16 | 17 | 18 | 19 | 20 | 21 |
| 22         | 23 | 24 | 25 | 26 | 27 | 28 |
| 29         | 30 | 1  | 2  | 3  | 4  | 5  |
| 6          | 7  | 8  | 9  | 10 | 11 | 12 |

## **Earliest Due Date (EDD)**

Strategy: select the task with the earliest due date (deadline)

- All tasks arrive at the same time (equal arrival times)
  - Fixed priority ( $d_i$  is fixed and known)
  - Preemption is not an issue (non-preemptive)
- *EDD minimizes the maximum lateness L<sub>max</sub>*
- What is the implication if EDD results in  $L_{max} > 0$ ?

### **EDD Example**





ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

**RT Scheduling 9** 

### **Jackson's Rule**

**Jackson's rule**: Given a set of n independent tasks, any algorithm that executes the tasks in order of nondecreasing deadlines is optimal with respect to maximum lateness

• If  $L_{max}(\sigma)$  is the maximum lateness of a schedule, then:

$$\forall \sigma: L_{max}(\sigma_{EDD}) \leq L_{max}(\sigma)$$

• Why does EDD minimize the maximum lateness? Proof?

## **Proof Sketch**

Given *n* tasks, show that  $\sigma_{EDD} = \tau_1 \tau_2 \dots \tau_n$  where  $d_1 \le d_2 \le \dots \le d_n$  minimizes the maximum lateness  $(\max_i (f_i - d_i))$ . Assume that the arrival time is zero for all tasks  $(r_i = 0)$ .

Consider a schedule  $\sigma$  that is not EDD, then there exist two consecutive tasks  $\tau_b$  and  $\tau_a$  in the schedule ( $\sigma = ... \tau_b \tau_a ...$ ) with  $d_a \leq d_b$ .

Step 1: what is the maximum lateness for the two tasks  $(L_{max}(a, b))$ ?

Step 2: show that switching the two tasks reduces the maximum lateness  $(L'_{max}(a, b) < L_{max}(a, b))$ 

Step 3: If you repeat the transposition, the schedule converges to EDD in a finite number of steps

## **Schedulability Analysis**

- How can we check if there is a feasible schedule for a task set Γ?
  - We can compute *L<sub>max</sub>*!
- A task set is feasible iff  $\forall i: f_i \leq d_i$
- If we sort the tasks using EDD and all tasks arrive simultaneously, then

$$f_i = \sum_{k=1}^i C_k$$

## **Earliest Deadline First (EDF)**

Strategy: select the task with the earliest deadline

#### Tasks may arrive at any time

- Dynamic priority ( $d_i$  depends on when the tasks arrive)
- Preemption is necessary for optimality and may also reduce lateness
- *EDF minimizes the maximum lateness L<sub>max</sub>* 
  - With the preemptive scheduling

### **EDF Example**

 Tasks that arrive with earlier deadlines pre-empt tasks with later deadlines



## **EDF with Non-Preemptive Scheduling**

Under non-preemptive scheduling, EDF is not optimal



## **EDF with Non-Preemptive Scheduling**

... unless the algorithm has knowledge of the future!

