
Prof. José F. Martínez

ECE3140 / CS3420 
Embedded Systems

Introduction to Real-Time 
Scheduling



Intro to Real Time 2ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Outline: Real-Time Scheduling
§ Real-time systems

§ Terminologies
§ Tasks and jobs
§ Parameters

§ Scheduling 
§ Problem
§ Considerations
§ Types

§ Reference
§ Chapter 2 (2.1-2.3), “Hard Real-Time Computing Systems 

Predictable Scheduling Algorithms and Applications” by 
Giorgio C. Buttazzo (Free electronic copy through Cornell 
library)



Intro to Real Time 3ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Introduction to Real-Time
§ Many computing systems need to respond to events 

within precise timing constraints

§ Tight interaction between sensing and actuation
à need predictable timing of operations

§ We won’t cover the details of how a system is 
controlled.



Intro to Real Time 4ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Real-Time Systems
Computing system that is able to respond to events 
within precise timing constraints is a real-time system

§ Correct operation depends on
§ Usual properties (producing the correct output, etc)
§ Also on the time at which the output is produced

§ Some interesting observations:
§ Time between different entities must be synchronized

§ Note: time synchronization is not a simple problem
§ Systems often run multiple tasks with varying criticality 

levels
§ Real time is not the same as fast!



Intro to Real Time 5ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Importance of Tasks
§ Hard real-time tasks: must meet their deadlines. 

Missing a deadline has a catastrophic effect.
§ Low-level control
§ Sensor-actuator interactions for critical functions

§ Example: airbag, engine control, etc.

§ Soft real-time tasks: Missing deadlines is 
undesirable, but only causes performance 
degradation
§ Reading keyboard input
§ Displaying a message
§ Updating graphics

§ Tasks can be assigned priorities



Intro to Real Time 6ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Performance vs. Predictability
Real-time is different from high performance

§ Real time: have to guarantee timing properties
§ Performance: minimize average response time

§ Source of unpredictability:
§ Architecture: cache, pipelining, . . .
§ Run-time system: scheduling, other tasks, . . .
§ Environment: Bursty information flow, extreme 

conditions, . . .
§ Input: no explicit notion of time in most languages



Intro to Real Time 7ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Real-Time Systems Terminology
§ A job is a unit of work that is scheduled and executed 

by the system 

§ A task is a sequence (possibly infinite) of jobs, which 
jointly provide some system functions 

§ A job has:
§ A request time ri (arrival time)
§ A start time si
§ A finishing time fi
§ A computation/execution time Ci
§ An absolute deadline di



Intro to Real Time 8ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Tasks and Jobs
§ A single job:

§ A task:



Intro to Real Time 9ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Periodic vs. Aperiodic Tasks 
§ A task can be time-driven (periodic) or event-driven 

(aperiodic)

Diagram source: Buttazzo book



Intro to Real Time 10ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Scheduling Algorithm
§ Scheduling algorithm: the strategy used to pick a ready task 

for execution

§ Two categories:
§ Preemptive: The running task can be temporarily suspended to 

execute another task
§ Non-preemptive: The running task cannot be suspended until 

completion or until it is blocked



Intro to Real Time 11ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Schedule
§ A schedule is a particular assignment of tasks (jobs) to the 

processor



Intro to Real Time 12ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Scheduling Example

§ The points at which σ changes value is where a context 
switch occurs. Each interval [ti, ti+1) is a time slice.



Intro to Real Time 13ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Feasible Schedule
§ A schedule σ is feasible if all tasks are able to complete with 

their set of constraints

§ A set of tasks Γ is schedulable if a feasible schedule exists

§ General problem: given Γ, a set of processors P, and a set 
of resources R, find an assignment of P and R that 
produces a feasible schedule



Intro to Real Time 14ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Derived Parameters

§ Lateness: Li = fi−di
§ Tardiness: max(0,Li)

§ Computation/execution time Ci = fi−si (assume continuous)
§ Residual computation time: ci(t)

§ Slack: Xi(t) = di−ci(t)

§ Response time: Ri = fi−ri



Intro to Real Time 15ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Jitters
§ Jitter is the time variation of a periodic event

§ Example: completion-time jitter



Intro to Real Time 16ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Resource Constraints
§ Resources may be limited or even unavailable
§ Shared resources may require mutual exclusion



Intro to Real Time 17ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Faster Processor
§ Having a faster processor doesn’t automatically mean it is 

easier to meet deadlines



Intro to Real Time 18ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Scheduling Algorithms
§ Preemptive or Non-preemptive

§ Static or Dynamic
§ Are the scheduling decisions based on parameters that 

change with time?
§ Fixed-priority vs. dynamic-priority

§ Online or Offline
§ Are the decisions made a priori with knowledge of task 

activations, or are they taken at run time based on the set of 
active tasks?

§ Optimal or Heuristic
§ Can you prove that the algorithm is optimal in terms of a 

certain criteria or not?


