
Prof. José F. Martínez

ECE3140 / CS3420
Embedded Systems

Locks

Locks 2ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Dekker’s Algorithm (T. Dekker, 1966)
P2 :
NCS2;
x2=1;
while (x1) {
if (turn!=2) x2=0;
while (turn!=2);
x2=1;

}
CS2;
x2=0;turn=1;

P1 :
NCS1;
x1=1;
while (x2) {
if (turn!=1) x1=0;
while (turn!=1);
x1=1;

}
CS1;
x1=0;turn=2;

Weaknesses?

Locks 3ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Outline
§ Lock: a synchronization primitive to efficiently

support mutual exclusion

§ Definition and usage example

§ Implementation
§ Atomic read-modify-write instructions
§ Spinlocks
§ Blocking locks

§ Building higher-level constructions using locks

Locks 4ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

New Abstraction: Locks
§ A lock l supports two basic operations:

§ lock(l) (sometimes called acquiring a lock)
§ unlock(l) (sometimes called releasing a lock)

P2 :
NCS2;
lock(l);
CS2;
unlock(l);

P1 :
NCS1;
lock(l);
CS1;
unlock(l);

Locks 5ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Why Use a Variable (‘l’)?
§ What if there are multiple resources that need to be

protected with a lock?

P2 :
lock();
x=x+1;
unlock();
:
lock();
y=y+1;
unlock();

P1 :
lock();
x=x+1;
unlock();
:
lock();
y=y+1;
unlock();

Note: the lock
variable (l) is
NOT a variable
that the lock is
protecting!

Locks 6ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Deadlock
§ Consider nested locks

P2
:
lock(b);
lock(a);
CS2;
unlock(a);
unlock(b);
:

P1
:
lock(a);
lock(b);
CS1;
unlock(b);
unlock(a);
:

Locks 7ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Atomicity through Disabling Interrupts
§ Timer interrupts are used to switch between

processes
§ To avoid that, disable interrupts!

§ On a uni-processor system, small atomic actions
can be performed by disabling interrupts
§ No interrupt within a critical section

§ Not a good solution in general

Locks 8ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Broken Mutual Exclusion Algorithm

P2 :
NCS2;

while (x1);
x2=1;

CS2;

x2=0;

P1 :
NCS1;

while (x2);
x1=1;

CS1;

x1=0;

Locks 9ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Atomic Read-Modify-Write Instruction
§ Mutual exclusion can be implemented using ordinary

load and store instructions
§ However, protocols for mutual exclusion are difficult to

design...

§ Simpler solution:
§ Atomic read-modify-write instructions

Test&Set (m), R:
R ß M[m];
if R==0 then

M[m] ß 1;

Swap (m), R:
Rt ß M[m];
M[m] ß R;
R ß Rt;

Fetch&Add (m), RV, R:
R ß M[m];
M[m] ß R + RV;

Examples: m is a memory location, R is a register

Locks 10ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Blocking Locks
§ Avoid unnecessary spinning

§ If another process owns a lock, suspend a process
§ Maintain a list of blocked processes for each lock

§ Wake up a waiting process when a lock is released

Locks 11ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Higher-Level Constructs
Locks can be used to build higher-level constructs

Example: Readers and Writers
§ Two types of processes

§ Reader: reads a shared resource
§ Writer: modifies a shared resource

§ Safety goals:
§ Reads and writes are mutually exclusive
§ Writes are mutually exclusive

§ Provide:
§ enter_r, exit_r
§ enter_w, exit_w

Locks 12ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Approach

§ A simple approach: two shared variables

§ nw: number of writers
§ nr: number of readers

Locks 13ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Enter

enter_w:
lock(m);
while (nw>0 || nr>0) {
unlock(m);
while (nw>0 || nr>0);
lock(m);

}
nw=1;
unlock(m);

enter_r:
lock(m);
while (nw) {
unlock(m);
while (nw);
lock(m);

}
nr=nr+1;
unlock(m);

