
Prof. José F. Martínez

ECE3140 / CS3420
Embedded Systems

Concurrency Basics

Concurrency Basics 2ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Outline: Concurrency
§ Definition and challenge

§ Basic assumptions
§ Private vs. shared memory
§ Atomicity

§ Execution traces
§ Multiple possible executions

§ Mutual exclusion
§ Properties
§ Algorithms

§ Reference
§ Dijkstra’s lecture note: E.W.Dijkstra Archive: Cooperating

sequential processes (EWD 123)
§ Blackboard: Content à Resources

Concurrency Basics 3ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Concurrency
§ What do we mean by “concurrent”?

§ . . . running in parallel, operating at the same time.
(Webster)
§ . . . existing or acting together or at the same time.
(Oxford)

§ Multiple programs may run concurrently through
context switching or on multiple cores

§ Challenge:
§ Operations from concurrent programs may be interleaved in

many different ways, and lead to non-deterministic outcomes

§ For the moment:
§ Avoid the assumptions on physical time
§ Think about how different operations are ordered

Concurrency Basics 4ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Shared Memory
§ How do two programs (a.k.a. process) communicate?

§ In shared memory systems, multiple programs communicate
through shared memory
§ Program P1 (sender) writes to a shared memory location
§ Program P2 (receiver) reads from the memory location

§ Classify variables into two kinds:
§ Shared variables: those accessed by more than one process
§ Private variables: those accessed by one process

§ Process vs. threads
§ Process: a running program often with its own memory space
§ Thread: an independent execution within a process, with shared

memory space; a process has one or more threads.
§ In this discussion, we will primarily use the term ‘process’ to refer to

multiple concurrent programs with shared memory

Concurrency Basics 5ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Basic Assumptions
§ Non-interference:

§ the concurrent activities of program parts that do not
share variables do not interfere with each other.

§ Atomicity
§ a single read or a single write to a shared variable is an

indivisible (atomic) action.

§ It is important to note these are assumptions!
§ Assignments cannot “collide” to produce a different result
§ This is a requirement of the implementation—it is not

free!

Concurrency Basics 6ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Atomicity
§ We need to know exactly what is atomic.

x=x+1 à r=x;r=r+1;x=r

§ The parallel composition x=x+1 || x=3:
r=x;r=r+1;x=r || x=3

§ We consider this equivalent to any interleaving of
atomic actions (assume x=0, initially)

r=x;r=r+1;x=r;x=3
r=x;r=r+1;x=3;x=r
r=x;x=3;r=r+1;x=r
x=3;r=x;r=r+1;x=r

Concurrency Basics 7ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Private vs. Shared Variables
§ Actions on private variables commute with actions

in other processes

§ Example: assume that r is private and x is shared

r=x;r=r+1;x=r;x=3
r=x;r=r+1;x=3;x=r
r=x;x=3;r=r+1;x=r
x=3;r=x;r=r+1;x=r

Concurrency Basics 8ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Interleaving Example
Two programs update a counter (x)

P1: x=x+1 à r1=x;r1=r1+1;x=r1

P2: x=x+1 à r2=x;r2=r2+1;x=r2

What are the possible values of x after executing both P1
and P2 if x=0 initially?

A: 0
B: 1
C: 2
D: 1 and 2
E: 0, 1, and 2

Concurrency Basics 9ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Execution Traces
When we examine execution traces, what about:

What are the possible executions that could occur?

P1: x=0;

while (1) {
x=1-x;

}

P2: y=0;
while (1) {
y=1-y;

}

Concurrency Basics 10ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Execution Traces
When we examine execution traces, what about:

What are the possible executions that could occur?

P1: x=0;

while (1) {
while (y==0);

x=1-x;

}

P2: y=0;
while (1) {
y=1-y;

}

Concurrency Basics 11ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Mutual Exclusion
§ What if two parallel processes want to access an

output port?
§ Resource sharing issue
§ We’d like to be able to say:

. . . ; <access shared resource>; . . .
§ Ensures resource is accessed by at most one process at

a time

§ Classic problem of mutual exclusion

§ Commonly used to ensure a part of a program is
executed atomically

Concurrency Basics 12ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Example
§ Compute the sum (shared variable) of array elements in

parallel by multiple processes
§ Read, update, write to ‘sum’ must be atomic

P1:
for(i=0;i<NUM1;i++) {
sum += a[i];

}

P2:
for(i=NUM1;i<NUM2;i++) {
sum += a[i];

}

Concurrency Basics 13ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Critical Sections

§ NCS: non-critical section
§ Both processes may run concurrently with arbitrary interleavings

§ CS: critical section
§ Only one process should be allowed to be in a critical section

P2:

NCS2;
. . .
CS2;
. . .

P1:

NCS1;
. . .
CS1;
. . .

Concurrency Basics 14ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Real-Life Example: Lab Collaboration
§ How to ensure that only one person edits the lab

code at a time?

Lab3
Code

(shared)

Concurrency Basics 15ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Mutual Exclusion: Requirements
§ Safety: at any moment, at most one process is

inside its CS.

§ Progress: At any moment, among the processes
actively contending for the CS, at least one is
guaranteed access in a finite amount of time.

§ Fairness: At any moment, every process actively
contending for the CS is guaranteed access in a
finite amount of time.

Concurrency Basics 16ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

The Turn Approach

§ Initially turn is either 1 or 2.
§ Does this correctly implement mutual exclusion?

P2 :
while (1) {
NCS2;
while (turn!=2);
CS2;
turn = 1;

}

P1 :
while (1) {
NCS1;
while (turn!=1);
CS1;
turn = 2;

}

Concurrency Basics 17ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Dekker’s Algorithm: First Attempt

Initially x1 = x2 = 0. Problem solved?

P2 :
NCS2;
while (x1);
x2=1;
CS2;
x2=0;

P1 :
NCS1;
while (x2);
x1=1;
CS1;
x1=0;

Concurrency Basics 18ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Dekker’s Algorithm: Second Attempt
P2 :
NCS2;
x2=1;
while (x1) {
x2=0;
while (x1);
x2=1;

}
CS2;
x2=0;

P1 :
NCS1;
x1=1;
while (x2) {
x1=0;
while (x2);
x1=1;

}
CS1;
x1=0;

Concurrency Basics 19ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Dekker’s Algorithm (T. Dekker, 1966)

P2 :
NCS2;
x2=1;
while (x1) {
if (turn!=2) x2=0;
while (turn!=2);
x2=1;

}
CS2;
x2=0;turn=1;

P1 :
NCS1;
x1=1;
while (x2) {
if (turn!=1) x1=0;
while (turn!=1);
x1=1;

}
CS1;
x1=0;turn=2;

Concurrency Basics 20ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Larger Atomic Actions
§ If mutual exclusion is so tricky, what about more

sophisticated requirements?
§ Mutual exclusion provides “larger” atomic actions
§ Perhaps we can have a mechanism to do this directly?

§ There are many options:
§ Special instructions

§ Atomic test and set
§ Atomic swap
§ Atomic fetch and increment

§ Locks
§ . . .

