
Prof. José Martínez

ECE3140 / CS3420 
Embedded Systems

Time Sharing



L7 – Time Sharing 2ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Time Sharing
§ Users often want to run many programs on a 

system

§ Goal: provide an illusion that there is a CPU 
dedicated to each running program

§ How? Virtualize a physical CPU by timing sharing
§ Run one program, stop it and run another, etc.

§ Abstraction: ‘process’ = a running program
§ Abstraction provided to a user
§ Encapsulate the state needed for each program



L7 – Time Sharing 3ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Outline
§ High-level operation

§ Process state
§ What needs to be included? Where is it stored?

§ OS/scheduler data structures

§ Context switch example in ARM

§ Memory protection

§ Reference for basic concepts
§ “Operating Systems: Three Easy Pieces” (free)

§ Processes: http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-intro.pdf
§ Context switching: http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-

mechanisms.pdf
§ Lab 3



L7 – Time Sharing 4ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Interrupt vs. Context Switch
§ A context switch is similar to handling an interrupt 

in terms of saving and restoring process state
§ But, ISRs did not have a notion of multiple processes



L7 – Time Sharing 5ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Process State
§ What does a process need to run? Where is the 

state stored?



L7 – Time Sharing 6ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Per-Process Stack

§ Separate stack per process

§ Process state in PCB
– SP
– (scheduling state)

§ Rest of state
– Saved in the stack

Process A stack

...

Process B stack

...

Process C stack



L7 – Time Sharing 7ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Process Queues
§ OS/scheduler maintains a queue of processes

§ Often, a separate queue for each scheduling state

struct queue {

process_t *p;

struct queue *next;
};



L7 – Time Sharing 8ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Process Scheduling State
§ A process could be:

§ ready
§ waiting/suspended/blocked
§ running



L7 – Time Sharing 9ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Process Control Block (PCB)
§ Need data structures to keep track of processes 

(process queue) and information on individual 
processes (PCB)



L7 – Time Sharing 10ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Context Switch Example

A’s SP ->
[process stack]

Stack space for 
process A

[empty]

Process A stack

...

Process B stack

...

Process C stack



L7 – Time Sharing 11ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Timer Interrupt

[process stack] Stack space for 
process A

xPSR

Saved by interrupt 
hardware

PC

LR

A’s SP -> R12, R3-R0

[empty]
Remaining stack 

space for
process A



L7 – Time Sharing 12ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Interrupt Handler Saves Registers

xPSR

Saved process 
state

PC

LR

R12,R3-R0

0xFFFFFFF9

A’s SP ->

R11-R4

[empty]
Stack space for 

process A



L7 – Time Sharing 13ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Switch the Stack Pointer
§ Select the next process to run

– For example, Process B

§ Save SP for Process A
– Put SP in A’s PCB

§ Set SP for the next process (B)
– Read SP from B’s PCB

§ A CPU will use Process B’s stack 
going forward 

Process A stack

...

Process B stack

...

Process C stack



L7 – Time Sharing 14ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Switch the Stack Pointer

xPSR

Saved process 
state

PC

LR

R12,R3-R0

0xFFFFFFF9

B’s SP ->

R11-R4

[empty]
Stack space for 

process B



L7 – Time Sharing 15ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Restoring Registers 

xPSR

Saved process 
state

PC

LR

R12,R3-R0

B’s SP -> 0xFFFFFFF9

R11-R4

[empty]
Stack space for 

process B



L7 – Time Sharing 16ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Return-from-interrupt

B’s SP ->

xPSR

Saved process 
state

PC

LR

R12,R3-R0

0xFFFFFFF9

R11-R4

[empty]
Stack space for 

process B



L7 – Time Sharing 17ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Process B Starts Running

B’s SP ->

[empty] Stack space for 
process B



L7 – Time Sharing 18ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Simple Scheduling Policy
§ First-Come First-Serve (FCFS)

§ Non-preemptive
§ Each programs runs until it voluntarily gives up a CPU
§ Also called cooperative multi-tasking

§ What if a program is malicious or buggy? 



L7 – Time Sharing 19ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Round-Robin Scheduling
§ Round Robin (RR):

§ The ready queue is FCFS

§ However . . .
§ A program cannot execute more than Q time units, often called a 

time quantum
§ When Q time units have elapsed, the program is interrupted and is 

put back into the ready queue à Preemptive scheduling

§ More on scheduling algorithms later



L7 – Time Sharing 20ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Memory Protection



L7 – Time Sharing 21ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Virtual Memory (Concept)


