
Prof. José F. Martínez

ECE3140 / CS3420
Embedded Systems

Lecture 4. Input/Output

L4 – IO 2ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Interacting with the Physical World
§ How does a processor interact with the physical

world?
§ . . . what happens to make the LED blink?

§ We need a way for the processor to communicate
with other devices

§ Lots of mechanisms possible

L4 – IO 3ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Outline
§ General I/O concepts

§ I/O ports and physical connections
§ General-Purpose Input Output (GPIO)
§ Software accesses to I/O ports
§ Polling vs. interrupts

§ Interrupt/exception handling
§ Exception handling in ARM

§ Handling multiple input sources

§ References (ARM specific)
§ Chapter 2 and Chapter 4 (pp.99-117)

§ Embedded Systems Fundamentals with ARM Cortex-M based
Microcontrollers

§ K64 Sub-Family Reference Manual
§ FRDM-K64F Freedom Module User’s Guide

L4 – IO 4ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.
Source: Kinetis K64F Sub-Family Data Sheet

L4 – IO 5ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Source: FRDM-K64F Freedom Module User’s Guide

K64F Peripherals

L4 – IO 6ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

I/O Ports
§ I/O locations/groups are typically called ports

§ Read/write
§ Data/control

MSP430

L4 – IO 7ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

LED Connection for FRDM-K64F

Source: FRDM-K64F Freedom Module User’s Guide

L4 – IO 8ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Source: Kinetis K64F Sub-Family Data Sheet

L4 – IO 9ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

General-Purpose Input and Output

§ GPIO = General-purpose input and output (digital)
§ Input: program can determine if input signal is a 1 or a 0
§ Output: program can set output to 1 or 0

§ Can use this to interface with external devices

§ Example
§ Input: switch
§ Output: LEDs

L4 – IO 10ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

What’s a One? A Zero?

§ Signal’s value is
determined by voltage

§ Input threshold
voltages depend on
supply voltage VDD

§ Exceeding VDD or
GND may damage
chip

L4 – IO 11ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

GPIO Port Bit Circuitry in MCU

§ Control
§ Direction
§ MUX

§ Data
§ Output (different

ways to access it)
§ Input

PDOR select

PDIR select

PDDR select

Data Bus
bit n

Port Data
Direction
Register

D Q

Port Data
Output

RegisterD Q

Address
Decoder

Address
Bus

Pin or
Pad on

package

Port Data
Input

Register
D Q

I/O Clock

Tgl
Rst
Set

PSOR select
PCOR select
PTOR select

Pin Control
Register

MUX field

L4 – IO 12ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Accessing I/O Ports
§ How to access an I/O port from software?

§ Special instructions
§ Special registers
§ Special memory locations

L4 – IO 13ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Option 1: I/O Instructions
§ Special instruction in the ISA for input/output

§ Example: Z80 ISA
§ out (243), A

§ Output value stored in register A to port 243
§ in A,254

§ Read the value in port 254 and store it in register A

§ Ports are special operands

L4 – IO 14ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Option 2: Special Registers
§ Special register in the ISA for input/output

§ Example: SNAP ISA
§ add $15,$1,$2

§ Register 15 is mapped for output operations
§ add $1,$15,$2

§ Register 15 is also mapped for input operations

§ I/O operation determined by writing specific values
to $15.

L4 – IO 15ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Option 3: Memory Mapped I/O
§ Memory mapped I/O:

Reads and writes to
specific memory
locations correspond to
I/O operations

Source: ARM Cortex-M4

L4 – IO 16ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Privilege Levels
§ Which software should manages the IO?

§ Processors often support multiple privilege levels
§ Supervisor / “Privileged” in Cortex-M4

§ Access to all resources
§ User / “Unprivileged” in Cortex-M4

§ Limited access to certain instructions and memory/peripheral

§ Which mode should a processor starts running in?

L4 – IO 17ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Handling Outputs
§ On-chip registers connected to I/O pins

§ Implementing output instructions:
§ Write register for output values
§ Change in state appears on the pins

§ . . . after a small delay

L4 – IO 18ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Handling Input
§ Need communication disciplines

§ How does software know if the value is valid?
§ Use a valid bit

§ 9-bit input, with 8-bits of data
§ Toggle 9th bit to indicate new data

§ Use encoded data
§ One-hot encoding
§ 01 = false, 10 = true, 00 = no data

§ How does software know when a new input is
ready?

L4 – IO 19ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Option 1: Polling
§ Use software to check

§ Keep reading the value in a loop

while (1) {
// read a GPIO port
// check the value

}

L4 – IO 20ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Option 2: Interrupts
§ A peripheral device notifies a processor that there

is a new input
§ Run Interrupt Service Routine (ISR)
§ Return to the original (interrupted) program

Port
Module

Main
Code

ISR

L4 – IO 21ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Polling vs. Interrupt
§ Polling

§ Simple
§ Slow - need to explicitly check to see if switch is pressed
§ Wasteful of CPU time - the faster a response we need, the

more often we need to check
§ Scales badly - difficult to build system with many activities

which can respond quickly. Response time depends on all
other processing.

§ Interrupt
§ Efficient - code runs only when necessary
§ Fast - hardware mechanism
§ Scales well
§ More complex to implement
§ Requires additional hardware

L4 – IO 22ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Interrupt Handling Sequence
§ Main code is running
§ Interrupt trigger occurs
§ Processor does some hard-wired processing
§ Processor executes ISR, including return-from-interrupt

instruction at the end
§ Processor resumes the main code

Main Code

ISR

Hardwired CPU
response activities

Source: ARM Tutorial Slides

L4 – IO 23ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Interrupt Handling vs. Function Calls
§ How is calling an exception/interrupt handler different

from a subroutine call? How to divide work between
‘caller’ (interrupt SW) and ‘callee’ (ISR)?

Input parameters:

Caller-saved vs. callee-saved registers:

Privileged mode:

L4 – IO 24ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Interrupt Handling
§ Enter an interrupt handler

§ HW saves PC [and possibly more registers]
§ [HW puts an interrupt/exception number in a register]
§ HW switches to a privileged ‘interrupt handler’ mode
§ HW jumps to the PC specified in the interrupt vector table

§ Interrupt Service Routine (ISR)
§ [ISR saves/restores additional registers that will be used]
§ [ISR may disable interrupts while it’s running]
§ ISR finds out the reason for an interrupt and processes it
§ ISR runs ‘return-from-interrupt’ instruction

§ Exit an interrupt handler
§ HW restored HW-saved registers
§ HW switches the privilege mode back
§ HW jumps to the saved PC

L4 – IO 25ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Interrupts, Exceptions, and Traps
§ Broadly, exceptions may refer to all types of events

that interrupt a normal program execution

§ Interrupts (asynchronous)
§ I/O device interrupt, reset, etc.

§ Exceptions (synchronous)
§ Arithmetic overflow, FP anomaly, page fault, misaligned

memory access, memory protection violation, illegal
instruction, etc.

§ System calls / Traps (synchronous)
§ SVCall

L4 – IO 26ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Exception Processing Sequence
§ Main code is running
§ Interrupt trigger occurs
§ Processor does some hard-wired processing
§ Processor executes ISR, including return-from-interrupt

instruction at the end
§ Processor resumes the main code

Main Code

ISR

Hardwired CPU
response activities

Source: ARM Tutorial Slides

L4 – IO 27ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

CPU’s Hardwired Exception Processing

1. Finish current instruction (except for lengthy instructions)
2. Push context (8 32-bit words) onto current stack (MSP or PSP)

§ xPSR, Return address, LR (R14), R12, R3, R2, R1, R0
3. Switch to handler/privileged mode, use MSP
4. Load PC with address of exception handler
5. Load LR with EXC_RETURN code
6. Load IPSR with exception number
7. Start executing code of exception handler

Usually 16 cycles from exception request to execution of first instruction in handler

Source: ARM Tutorial Slides

L4 – IO 28ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

2. Push Context onto Current Stack

§ Two SPs: Main (MSP), process (PSP)
§ Which is active depends on operating mode, CONTROL

register bit 1
§ Stack grows toward smaller addresses

SP points here upon entering ISR

L4 – IO 29ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

3. Switch to Handler/Privileged Mode
§ Thread mode

– Privileged or unprivileged
– MSP or PSP

§ Handler mode
– Privileged
– Always uses Main SP

Thread
Mode.

MSP or PSP.

Handler Mode
MSP

Reset

Starting
Exception
Processing

Exception
Processing
Completed

Source: ARM Tutorial Slides

L4 – IO 30ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Update IPSR with Exception Number

PORTD_IRQ is Exception number
0x2F

(interrupt number + 0x10)

L4 – IO 31ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Vector Table Example

§ PORTD ISR is IRQ #31 (0x1F), so
vector to handler begins at
0x40+4*0x1F = 0xBC

§ Why is the vector odd?
0x0000_0455

§ LSB of address indicates that
handler uses Thumb code

Source: ARM Tutorial Slides

L4 – IO 32ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

4. Load PC With Address Of Exception Handler

Source: ARM Tutorial Slides

0x0000_0004
Reset Interrupt Vector

Non-Maskable Interrupt Vector

Port A Interrupt Vector
Port D Interrupt Vector

Reset Interrupt
Service Routine

Port D ISR

Port A ISR

Non-maskable Interrupt
Service Routine

start

start

PORTD_IRQHandler

PORTD_IRQHandler

NMI_IRQHandler

NMI_IRQHandler
PORTA_IRQHandler

0x0000_0008

0x0000_00B8
0x0000_00BC

PORTA_IRQHandler

L4 – IO 33ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

5. Load LR With EXC_RETURN Code

§ EXC_RETURN value generated by CPU to provide
information on how to return
§ Which SP to restore registers from? MSP (0) or PSP (1)

§ Previous value of SPSEL

§ Which mode to return to? Handler (0) or Thread (1)
§ Another exception handler may have been running when this exception was

requested

EXC_RETURN Return Mode Return Stack Description

0xFFFF_FFF1 0 (Handler) 0 (MSP) Return to exception handler

0xFFFF_FFF9 1 (Thread) 0 (MSP) Return to thread with MSP

0xFFFF_FFFD 1 (Thread) 1 (PSP) Return to thread with PSP

Source: ARM Tutorial Slides

L4 – IO 34ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

6. Start Executing Exception Handler

§ Exception handler starts running, unless
preempted by a higher-priority exception

§ Exception handler may save additional registers
on stack
§ For example, handler may call a subroutine and save

LR and R4 in the following example

Source: ARM Tutorial Slides

L4 – IO 35ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Exiting an Exception Handler
1. Execute instruction triggering exception return

processing
2. Select return stack, restore context from that stack
3. Resume execution of code at restored address

Source: ARM Tutorial Slides

L4 – IO 36ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

1. Execute Instruction for Exception Return

§ No “return from interrupt” instruction
§ Use regular instruction instead

§ BX LR - Branch to address in LR by
loading PC with LR contents

§ POP {…, PC} - Pop address from
stack into PC

§ … with a special value
EXC_RETURN loaded into the PC
to trigger exception handling
processing
§ BX LR used if EXC_RETURN is still

in LR
§ If EXC_RETURN has been saved

on stack, then use POP

Source: ARM Tutorial Slides

L4 – IO 37ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

2. Select Stack, Restore Context
§ Check EXC_RETURN to determine from which SP to pop

the context

§ Pop the registers from that stack

SP points here during handler

SP points here after handler

EXC_RETURN Return Stack Description

0xFFFF_FFF1 0 (MSP) Return to exception handler with MSP

0xFFFF_FFF9 0 (MSP) Return to thread with MSP

0xFFFF_FFFD 1 (PSP) Return to thread with PSP

Source: ARM Tutorial Slides

L4 – IO 38ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Outline
§ Sharing data between ISR and other threads

§ Volatile variables
§ Non atomic updates

§ Disabling interrupts

§ Handling multiple input sources

L4 – IO 39ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Example: Digital Clock
int Minutes; // Updated every minute via timer ISR

// main program

int hour, min;

...

while (1) {

hour = Minutes/60; // i1

min = Minutes%60; // i2

DisplayTime(hour,min); // Displays hh:mm

}

// ISR for timer interrupts (every minute)

...

Minutes++;

L4 – IO 40ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Problem: Variables Kept in Registers
§ Compilers assume that variables in memory do not change

spontaneously, and optimize based on that belief
§ Don’t reload a variable from memory if current function hasn’t

changed it
§ Read variable from memory into register (faster access)
§ Write back to memory at end of the procedure, or before a procedure

call, or when compiler runs out of free registers
§ This optimization can fail

§ Example: reading from input port, polling for key press
§ while (SW_0) ; will read from SW_0 once and reuse that value
§ Will generate an infinite loop triggered by SW_0 being true

§ Variables for which it fails
§ Memory-mapped peripheral register – register changes on its own
§ Global variables modified by an ISR – ISR changes the variable
§ Global variables in a multithreaded application – another thread or

ISR changes the variable

L4 – IO 41ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

The Volatile Directive
§ Need to tell compiler which variables may change

outside of its control
§ Use volatile keyword to force compiler to reload these

vars from memory for each use

volatile unsigned int num_ints;

volatile int * var; // or
int volatile * var;

§ Now each C source read of a variable (e.g. status
register) will result in an assembly language LDR
instruction

L4 – IO 42ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Problem: Non-Atomic Updates
volatile int Minutes; // Updated every minute via timer ISR

int hour, min;

...

hour = Minutes/60; // i1

min = Minutes%60; // i2
DisplayTime(hour,min); // Displays hh:mm

Q: Assume Minutes=119 before i1. What are possible
outcomes of this program?
A: 1:59
B: 2:00
C: 1:00
D: A or B
E: A or B or C

L4 – IO 43ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Disabling Interrupts
Two major types of interrupts:

§ Non-maskable
§ Can’t disable them
§ Example: reset

§ Maskable
§ User-controlled
§ Can selectively activate them

L4 – IO 44ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Core Exception Mask Register (ARM)
§ Similar to “Global interrupt disable” bit in other MCUs

§ PRIMASK - Exception mask register (CPU core)
§ Bit 0: PM Flag

§ Set to 1 to prevent activation of all exceptions with configurable
priority

§ Clear to 0 to allow activation of all exception
§ Access using CPS, MSR and MRS instructions
§ Use to prevent data race conditions with code needing

atomicity

§ CMSIS-CORE API
§ void __enable_irq() - clears PM flag
§ void __disable_irq() - sets PM flag
§ uint32_t __get_PRIMASK() - returns value of PRIMASK
§ void __set_PRIMASK(uint32_t x) - sets PRIMASK to x

L4 – IO 45ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Multiple IO Devices
§ Which device raised an interrupt?

§ Which interrupt service routine to run?

§ Common approaches
§ (Polling)
§ Interrupt Vector Table (IVT) + Multiple IRQ signals
§ Interrupt + Polling
§ Daisy chain

L4 – IO 46ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Prioritization (ARM)
§ Exceptions are prioritized to order the response

simultaneous requests (smaller number = higher priority)

§ Priorities of some exceptions are fixed
§ Reset: -3, highest priority
§ NMI: -2
§ Hard Fault: -1

§ Priorities of other (peripheral) exceptions are adjustable
§ Value is stored in the interrupt priority register (IPR0-7)
§ 0x00
§ 0x40
§ 0x80
§ 0xC0

Source: ARM Tutorial Slides

L4 – IO 47ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Special Cases of Prioritization (ARM)
§ Simultaneous exception requests?

§ Lowest exception type number is serviced first

§ New exception requested while a handler is
executing?
§ New priority higher than current priority?

§ New exception handler preempts current exception handler
§ New priority lower than or equal to current priority?

§ New exception held in pending state
§ Current handler continues and completes execution
§ Previous priority level restored
§ New exception handled if priority level allows

L4 – IO 48ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Daisy Chain
§ Wiring scheme where multiple devices are wired

together in sequence or in a ring

