
Prof. José F. Martínez

ECE3140 / CS3420 
Embedded Systems

Lecture 4. Input/Output



L4 – IO 2ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Interacting with the Physical World
§ How does a processor interact with the physical 

world?
§ . . . what happens to make the LED blink?

§ We need a way for the processor to communicate 
with other devices

§ Lots of mechanisms possible
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Outline
§ General I/O concepts

§ I/O ports and physical connections
§ General-Purpose Input Output (GPIO)
§ Software accesses to I/O ports
§ Polling vs. interrupts

§ Interrupt/exception handling
§ Exception handling in ARM

§ Handling multiple input sources

§ References (ARM specific)
§ Chapter 2 and Chapter 4 (pp.99-117)

§ Embedded Systems Fundamentals with ARM Cortex-M based 
Microcontrollers

§ K64 Sub-Family Reference Manual
§ FRDM-K64F Freedom Module User’s Guide
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Source: Kinetis K64F Sub-Family Data Sheet 



L4 – IO 5ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Source: FRDM-K64F Freedom Module User’s Guide

K64F Peripherals
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I/O Ports
§ I/O locations/groups are typically called ports

§ Read/write
§ Data/control

MSP430
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LED Connection for FRDM-K64F 

Source: FRDM-K64F Freedom Module User’s Guide
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Source: Kinetis K64F Sub-Family Data Sheet 
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General-Purpose Input and Output

§ GPIO = General-purpose input and output (digital)
§ Input: program can determine if input signal is a 1 or a 0
§ Output: program can set output to 1 or 0

§ Can use this to interface with external devices

§ Example
§ Input: switch
§ Output: LEDs
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What’s a One? A Zero?

§ Signal’s value is 
determined by voltage 

§ Input threshold 
voltages depend on 
supply voltage VDD

§ Exceeding VDD or 
GND may damage 
chip
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GPIO Port Bit Circuitry in MCU

§ Control
§ Direction
§ MUX

§ Data
§ Output (different 

ways to access it)
§ Input

PDOR select

PDIR select

PDDR select

Data Bus 
bit n

Port Data 
Direction 
Register

D Q

Port Data 
Output

RegisterD Q

Address
Decoder

Address 
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Pin or 
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package
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I/O Clock
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Pin Control 
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Accessing I/O Ports
§ How to access an I/O port from software?

§ Special instructions
§ Special registers
§ Special memory locations
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Option 1: I/O Instructions
§ Special instruction in the ISA for input/output

§ Example: Z80 ISA
§ out (243), A

§ Output value stored in register A to port 243
§ in A,254

§ Read the value in port 254 and store it in register A

§ Ports are special operands
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Option 2: Special Registers
§ Special register in the ISA for input/output

§ Example: SNAP ISA
§ add $15,$1,$2

§ Register 15 is mapped for output operations
§ add $1,$15,$2

§ Register 15 is also mapped for input operations

§ I/O operation determined by writing specific values 
to $15.
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Option 3: Memory Mapped I/O
§ Memory mapped I/O: 

Reads and writes to 
specific memory 
locations correspond to 
I/O operations

Source: ARM Cortex-M4
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Privilege Levels
§ Which software should manages the IO?

§ Processors often support multiple privilege levels
§ Supervisor / “Privileged” in Cortex-M4

§ Access to all resources
§ User / “Unprivileged” in Cortex-M4

§ Limited access to certain instructions and memory/peripheral

§ Which mode should a processor starts running in?
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Handling Outputs
§ On-chip registers connected to I/O pins

§ Implementing output instructions:
§ Write register for output values
§ Change in state appears on the pins

§ . . . after a small delay
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Handling Input
§ Need communication disciplines

§ How does software know if the value is valid?
§ Use a valid bit

§ 9-bit input, with 8-bits of data
§ Toggle 9th bit to indicate new data

§ Use encoded data
§ One-hot encoding
§ 01 = false, 10 = true, 00 = no data

§ How does software know when a new input is 
ready? 
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Option 1: Polling
§ Use software to check

§ Keep reading the value in a loop

while (1) {
// read a GPIO port
// check the value

}
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Option 2: Interrupts
§ A peripheral device notifies a processor that there 

is a new input
§ Run Interrupt Service Routine (ISR)
§ Return to the original (interrupted) program

Port 
Module

Main 
Code

ISR
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Polling vs. Interrupt
§ Polling

§ Simple
§ Slow - need to explicitly check to see if switch is pressed
§ Wasteful of CPU time - the faster a response we need, the 

more often we need to check
§ Scales badly - difficult to build system with many activities 

which can respond quickly. Response time depends on all 
other processing.

§ Interrupt
§ Efficient - code runs only when necessary
§ Fast - hardware mechanism 
§ Scales well
§ More complex to implement
§ Requires additional hardware
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Interrupt Handling Sequence
§ Main code is running
§ Interrupt trigger occurs
§ Processor does some hard-wired processing
§ Processor executes ISR, including return-from-interrupt 

instruction at the end
§ Processor resumes the main code

Main Code

ISR

Hardwired CPU
response activities

Source: ARM Tutorial Slides
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Interrupt Handling vs. Function Calls
§ How is calling an exception/interrupt handler different 

from a subroutine call? How to divide work between 
‘caller’ (interrupt SW) and ‘callee’ (ISR)?

Input parameters:

Caller-saved vs. callee-saved registers:

Privileged mode: 
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Interrupt Handling
§ Enter an interrupt handler

§ HW saves PC [and possibly more registers]
§ [HW puts an interrupt/exception number in a register]
§ HW switches to a privileged ‘interrupt handler’ mode
§ HW jumps to the PC specified in the interrupt vector table

§ Interrupt Service Routine (ISR)
§ [ISR saves/restores additional registers that will be used]
§ [ISR may disable interrupts while it’s running]
§ ISR finds out the reason for an interrupt and processes it
§ ISR runs ‘return-from-interrupt’ instruction

§ Exit an interrupt handler
§ HW restored HW-saved registers
§ HW switches the privilege mode back
§ HW jumps to the saved PC
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Interrupts, Exceptions, and Traps
§ Broadly, exceptions may refer to all types of events 

that interrupt a normal program execution

§ Interrupts (asynchronous)
§ I/O device interrupt, reset, etc.

§ Exceptions (synchronous)
§ Arithmetic overflow, FP anomaly, page fault, misaligned 

memory access, memory protection violation, illegal 
instruction, etc.

§ System calls / Traps (synchronous)
§ SVCall
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Exception Processing Sequence
§ Main code is running
§ Interrupt trigger occurs
§ Processor does some hard-wired processing
§ Processor executes ISR, including return-from-interrupt 

instruction at the end
§ Processor resumes the main code

Main Code

ISR

Hardwired CPU
response activities

Source: ARM Tutorial Slides
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CPU’s Hardwired Exception Processing

1. Finish current instruction (except for lengthy instructions)
2. Push context (8 32-bit words) onto current stack (MSP or PSP)

§ xPSR, Return address, LR (R14), R12, R3, R2, R1, R0
3. Switch to handler/privileged mode, use MSP
4. Load PC with address of exception handler
5. Load LR with EXC_RETURN code
6. Load IPSR with exception number
7. Start executing code of exception handler

Usually 16 cycles from exception request to execution of first instruction in handler

Source: ARM Tutorial Slides
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2. Push Context onto Current Stack

§ Two SPs: Main (MSP), process (PSP)
§ Which is active depends on operating mode, CONTROL 

register bit 1
§ Stack grows toward smaller addresses

SP points here upon entering ISR
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3. Switch to Handler/Privileged Mode
§ Thread mode

– Privileged or unprivileged
– MSP or PSP

§ Handler mode
– Privileged
– Always uses Main SP

Thread
Mode. 

MSP or PSP.

Handler Mode
MSP

Reset

Starting 
Exception 
Processing

Exception 
Processing
Completed

Source: ARM Tutorial Slides
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Update IPSR with Exception Number

PORTD_IRQ is Exception number 
0x2F 

(interrupt number + 0x10)
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Vector Table Example

§ PORTD ISR is IRQ #31 (0x1F), so 
vector to handler begins at 
0x40+4*0x1F = 0xBC

§ Why is the vector odd? 
0x0000_0455

§ LSB of address indicates that 
handler uses Thumb code

Source: ARM Tutorial Slides
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4. Load PC With Address Of Exception Handler

Source: ARM Tutorial Slides

0x0000_0004
Reset Interrupt Vector

Non-Maskable Interrupt Vector

Port A Interrupt Vector
Port D Interrupt Vector

Reset Interrupt 
Service Routine

Port D ISR

Port A ISR

Non-maskable Interrupt 
Service Routine

start

start

PORTD_IRQHandler

PORTD_IRQHandler

NMI_IRQHandler

NMI_IRQHandler
PORTA_IRQHandler

0x0000_0008

0x0000_00B8
0x0000_00BC

PORTA_IRQHandler
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5. Load LR With EXC_RETURN Code

§ EXC_RETURN value generated by CPU to provide 
information on how to return
§ Which SP to restore registers from? MSP (0) or PSP (1)

§ Previous value of SPSEL

§ Which mode to return to? Handler (0) or Thread (1)
§ Another exception handler may have been running when this exception was 

requested

EXC_RETURN Return Mode Return Stack Description

0xFFFF_FFF1 0 (Handler) 0 (MSP) Return to exception handler

0xFFFF_FFF9 1 (Thread) 0 (MSP) Return to thread with MSP

0xFFFF_FFFD 1 (Thread) 1 (PSP) Return to thread with PSP

Source: ARM Tutorial Slides
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6. Start Executing Exception Handler

§ Exception handler starts running, unless 
preempted by a higher-priority exception

§ Exception handler may save additional registers 
on stack
§ For example, handler may call a subroutine and save 

LR and R4 in the following example

Source: ARM Tutorial Slides
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Exiting an Exception Handler
1. Execute instruction triggering exception return 

processing
2. Select return stack, restore context from that stack
3. Resume execution of code at restored address

Source: ARM Tutorial Slides
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1. Execute Instruction for Exception Return

§ No “return from interrupt” instruction
§ Use regular instruction instead

§ BX LR - Branch to address in LR by 
loading PC with LR contents

§ POP {…, PC} - Pop address from 
stack into PC

§ … with a special value 
EXC_RETURN loaded into the PC 
to trigger exception handling 
processing
§ BX LR used if EXC_RETURN is still 

in LR
§ If EXC_RETURN has been saved 

on stack, then use POP

Source: ARM Tutorial Slides
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2. Select Stack, Restore Context
§ Check EXC_RETURN to determine from which SP to pop 

the context

§ Pop the registers from that stack

SP points here during handler

SP points here after handler

EXC_RETURN Return Stack Description

0xFFFF_FFF1 0 (MSP) Return to exception handler with MSP

0xFFFF_FFF9 0 (MSP) Return to thread with MSP

0xFFFF_FFFD 1 (PSP) Return to thread with PSP

Source: ARM Tutorial Slides
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Outline
§ Sharing data between ISR and other threads

§ Volatile variables
§ Non atomic updates

§ Disabling interrupts

§ Handling multiple input sources
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Example: Digital Clock
int Minutes; // Updated every minute via timer ISR

// main program

int hour, min;

...

while (1) {

hour = Minutes/60; // i1

min = Minutes%60; // i2

DisplayTime(hour,min); // Displays hh:mm

}

// ISR for timer interrupts (every minute)

...

Minutes++;
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Problem: Variables Kept in Registers
§ Compilers assume that variables in memory do not change 

spontaneously, and optimize based on that belief
§ Don’t reload a variable from memory if current function hasn’t 

changed it
§ Read variable from memory into register (faster access)
§ Write back to memory at end of the procedure, or before a procedure 

call, or when compiler runs out of free registers
§ This optimization can fail

§ Example: reading from input port, polling for key press
§ while (SW_0) ; will read from SW_0 once and reuse that value
§ Will generate an infinite loop triggered by SW_0 being true

§ Variables for which it fails
§ Memory-mapped peripheral register – register changes on its own
§ Global variables modified by an ISR – ISR changes the variable
§ Global variables in a multithreaded application – another thread or 

ISR changes the variable
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The Volatile Directive
§ Need to tell compiler which variables may change 

outside of its control
§ Use volatile keyword to force compiler to reload these 

vars from memory for each use

volatile unsigned int num_ints;

volatile int * var; // or
int volatile * var;

§ Now each C source read of a variable (e.g. status 
register) will result in an assembly language LDR 
instruction
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Problem: Non-Atomic Updates
volatile int Minutes; // Updated every minute via timer ISR

int hour, min;

...

hour = Minutes/60; // i1

min = Minutes%60; // i2
DisplayTime(hour,min); // Displays hh:mm

Q: Assume Minutes=119 before i1. What are possible 
outcomes of this program?
A: 1:59
B: 2:00
C: 1:00
D: A or B
E: A or B or C
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Disabling Interrupts
Two major types of interrupts:

§ Non-maskable
§ Can’t disable them
§ Example: reset

§ Maskable
§ User-controlled
§ Can selectively activate them
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Core Exception Mask Register (ARM)
§ Similar to “Global interrupt disable” bit in other MCUs

§ PRIMASK - Exception mask register (CPU core)
§ Bit 0: PM Flag

§ Set to 1 to prevent activation of all exceptions with configurable 
priority

§ Clear to 0 to allow activation of all exception
§ Access using CPS, MSR and MRS instructions
§ Use to prevent data race conditions with code needing 

atomicity

§ CMSIS-CORE API
§ void __enable_irq() - clears PM flag
§ void __disable_irq() - sets PM flag
§ uint32_t __get_PRIMASK() - returns value of PRIMASK
§ void __set_PRIMASK(uint32_t x) - sets PRIMASK to x 
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Multiple IO Devices
§ Which device raised an interrupt?

§ Which interrupt service routine to run?

§ Common approaches
§ (Polling)
§ Interrupt Vector Table (IVT) + Multiple IRQ signals
§ Interrupt + Polling
§ Daisy chain



L4 – IO 46ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

Prioritization (ARM)
§ Exceptions are prioritized to order the response 

simultaneous requests (smaller number = higher priority)

§ Priorities of some exceptions are fixed
§ Reset: -3, highest priority
§ NMI: -2
§ Hard Fault: -1

§ Priorities of other (peripheral) exceptions are adjustable
§ Value is stored in the interrupt priority register (IPR0-7)
§ 0x00
§ 0x40
§ 0x80
§ 0xC0

Source: ARM Tutorial Slides
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Special Cases of Prioritization (ARM)
§ Simultaneous exception requests?

§ Lowest exception type number is serviced first

§ New exception requested while a handler is 
executing?
§ New priority higher than current priority? 

§ New exception handler preempts current exception handler
§ New priority lower than or equal to current priority? 

§ New exception held in pending state 
§ Current handler continues and completes execution
§ Previous priority level restored
§ New exception handled if priority level allows
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Daisy Chain
§ Wiring scheme where multiple devices are wired 

together in sequence or in a ring


