Introduction to
Assembly Language

ECE 3140/CS 3420 — EMBEDDED SYSTEMS

© 2019 José F. Martinez. Unauthorized distribution prohibited.

What is assembly language?

sAssembly code: Human-readable, quasi-isomorphic translation of
machine code
= Ok, but what is machine code?

"Machine code: Binary-encoded instructions describing a program
" Directly executable by the processor

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Machine code example (made up)

=Processor:
" Fetches next instruction from program

=" Decodes instruction

" Executes according to instruction program
" Rinse and repeat PC—1 1101010100
1001111111

Program counter: Keeps track of
where processor is in the program

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Machine code example (made up)

="Assume:
" 16 different instructions
= 8 registers to store data (also PC, Z)
" Destination register is also source operand

="Processor:
" Fetches next instruction from memory
" Decodes instruction
" Executes according to instruction
" Rinse and repeat

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

op

PC —

src1l/dst

1101010100

1001111111

src2

1101

010

100

R[dst] «— R[src1]—R[src2];
/ < R[dst] == 0; PC «— PC+1
offset

op

1001

111111

PC «— Z? PC+1 : PC+offset

Assembly equivalent (made up)

EAssume: next: | SUB R2,R4
= 16 different instructions oT% next
= 8 registers to store data (also PC, Z) op src1/dst src2
" Destination register is also source operand SUB 2 4
"Processor: R2 < R2-R4; Z < R2 == 0; PC «— PC+1
" Fetches next instruction from memory
" Decodes instruction op offset

= Executes according to instruction BNZ 1

" Rinse and repeat

PC < Z?PC+1:PC-1

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Who programs in assembly?

"Nowadays, mostly people that enjoy pain and suffering
" Ok, some low-level tasks best in assembly

=ECE 3140/CS 3420 students (for a few weeks at least)

=Compilers/interpreters extremely good at generating
fast machine code from high-level languages

" Tendency for bloated executables (e.g., libraries)
* Not always fastest (e.g., critical code block)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

This item is over 100MB.
Infinity Blade Il will not download

until you connect to Wi-Fi.

Cancel OK

iDownloadBlog

So why study assembly?

sUnderstand hardware-software interface
" What functionality does the hardware provide?
" How are high-level language constructs supported?

= Subroutines, recursion

" How are system services provided?
= Dynamic allocation of variables

= |nteraction with 1/0 devices
= Multitasking

"Build “bare-metal” (embedded) systems
" Minimize code bloat; speed up critical code blocks

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Instruction Set Architecture (ISA)

=Contract between hardware and software

"Hardware free to implement it in different ways

... as long as software can’t tell the difference!
- Improvements dCroSS processor generations
" Design choices across product families (e.g., high-performance vs. low-energy)
" High-performance trickery (e.g., out-of-order execution)

sSoftware free to use any syntax
... as long as it can be translated into working assembly program!

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

A simple implementation (made up)

l

m{SE(

g Adder B

offset),0}—>

branch outcome

next:

<OZZNN=0O

M_address
g

Data in
=

IMM

o g

store? load?

Adapted from D. Albonesi

SUB R2,R4

BNZ next

Intro to Assembly Language

ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

branch outcome

S branch/type?

A complex implementation (AMD Athlon)

Branch Prediction
Tahle

FPU StackMap / Rename
FPU Scheduler {36-enixy)

FPU Regisier File (88-eniry)

Anndtech

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

ARM Cortex-M architecture

=32-bit datapath (operands and results)

®32-bit addressing space (memory size)
sThumb ISA (vs. ARM ISA in Cortex-Ax)

" Most instructions 16-bit encoding for compactness
» Some instructions 32 bits to encode additional functionality

=Different products: MO, MO+, M3, M4, M7

" “Core” ISA is the same; extensions for functionality

"ARM is fabless: License IP, implementation up to customer

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

ARMCORTEX

Processor Technology

\\'\ted'\)(e
o\® A
Y.
R USRS Cortex-M7
\)\e rocessor Technology
g ARMCORTEX'
ProcessorTechnology Cortex-M4

ARMCORTEX Cortex-M3

CoreMark

LSS Cortex-M0+ per MHz

Cortex-M0 Maximum DSC Performance
Digital Signal Control (DSC) Flexible Memory System

Performance eficency Processor wih DYF Doutie & Single Precison F7

Lowest power Feature rich connectivity Qcce.leratefi S"‘:E 8

Lowest cost Outstand.ing energy oating point (FP)
Low area efficiency Digital Signal Control application space
ARM
‘8/16-bit’ Traditional application space “16/32-bit’ Traditional application space

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Instruction set summary

MOV

LDR, LDRB, LDRH, LDRSH, LDRSB, LDM, STR, STRB, STRH, STM
ADD, ADDS, ADCS, ADR, SUB, SUBS, SBCS, RSBS, MULS
Compare CMP, CMN

ANDS, EORS, ORRS, BICS, MVNS, TST

LSLS, LSRS, ASRS, RORS

PUSH, POP

T, B, BL, B{cond}, BX, BLX

SXTH, SXTB, UXTH, UXTB

REV, REV16, REVSH

SVC, CPSID, CPSIE, SETEND, BKPT

NOP
SEV, WFE, WFI, YIELD

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

ARM

Instruction format

"General format: op <dst> <src1> <src2>
* There may be fewer source operands and/or no destination

* Operands may be registers, or (sometimes) immediate constants

sSome examples:

= SUB R7,R2,R4 (“subtract”)
= R7 «— R2-R4

= SUBS R2,R2,#3 (“subtract and update status flags”)
= R2 «— R2-3; update status flags (SUBS vs. SUB) according to result (will cover shortly)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Instruction format

"General format: op <dst> <src1> <src2>
* There may be fewer source operands and/or no destination
* Operands may be registers, or (sometimes) immediate constants

sSome more examples:
= CMP R2,R4 (“compare”)

= Update status flags (will cover shortly) according to result of R2—R4; drop result

= BNE <label> (“branch if not equal”)

= Jump (branch) to instruction at position <label> in the program if status flagZ # 0
= Operand actually encoded as offset from current position in the program

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Operands

sGeneral-purpose registers
" RO-R7 “low registers,” accessible by all instructions

" R8-12 “high registers,” not accessible by many 16-bit instructions

" R13-15 reserved for special purposes (will cover shortly)
= R15 = “program counter” (PC); R14 = “link register” (LR); R13 = “stack pointer” (SP).
= Write to at your own peril!

"|mmediate values
=" Encoded within the instruction format

*Memory locations (will cover shortly)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Instruction encoding

=32-bit instruction if bits [15:11]
of the first half-word are Ox1d-f
= Otherwise, 16-bit instruction

"0pcodes must be unambiguous

" First few bits tell decoder what to
expect in the rest of the instruction

Intro to Assembly Language

151413121110 9 8 7 6 5 4 3 2 1 0

opcode

Table A5-1 shows the allocation of 16-bit instruction encodings.

Table A5-1 16-bit Thumb instruction encoding

opcode

Instruction or instruction class

00xxxX

Shift (immediate), add, subtract, move, and compare on page A5-6

010000

Data processing on page AS5-7

010001

Special data instructions and branch and exchange on page A5-8

01001x

Load from Literal Pool, see LDR (literal) on page A6-90

0101xx
011xxx
100xxx

Loadistore single data item on page A5-9

10100x

Generate PC-relative address, see ADR on page A6-30

10101x

Generate SP-relative address, see ADD (SP plus immediate) on page A6-26

1011xx

Miscellaneous 16-bit instructions on page A5-10

11000x

Store multiple registers, see STM / STMIA / STMEA on page A6-218

11001x

Load multiple registers, see LDM / LDMIA / LDMFD on page A6-84

1101xx

Conditional branch, and supervisor call on page A5-12

11100x

Unconditional Branch, see B on page A6-40

ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

ARM

Encoding T3 ARMvV7-M
SUB{S}<c>.W <Rd>,<Rn>,#<const>

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 210
|11110‘i|0‘1101|5‘ Rn HO‘mlmB‘ Rd ‘ imm8

°]
° if Rd == "1111' & setflags then SEE CMP (immediate);
if Rn == '1101' then SEE SUB (SP minus immediate);
o d = UInt(Rd); n = UInt(Rn); setflags = (S = '1'); imm32 = ThumbExpandImm(i:imm3:imm8);

if d IN {13,15} || n = 15 then UNPREDICTABLE;

Encoding T4 ARMV7-M

Encoding T1 All versions of the Thumb ISA. A

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 43 2 10

SUBS <Rd>,<Rn>,#<imm3> Outside IT block. |1 111 0‘i|1|0 10 1|0‘ Rn Ho‘lmm3| Rd ‘ imms
SUB<C> <Rd> ’ <Rn> ’#<imm3> I'n's‘lde rT bl(xk‘ :: :: : :ﬁ(l&: ::Z: SEE A53:;(SP minus immediate);
q = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 if d IN {13,15} then UNPREDICTABLE;
0 001 1|1|1| imm3 | Rn Rd ARM

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

Encoding T2 All versions of the Thumb ISA.

SUBS <Rdn>,#<imm8> Outside IT block.

SUB<C> <Rdn>,#<imm8> Inside IT block.
151413121110 9 8 7 6 5 4 3 2 1 0
0 0 1|1 1| Rdn imm$8

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

ARM

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Memory organization

"|Integer value types: byte (8b), half word (16b), word (32b)

=32-bit addresses = 4 GB addressing space
" Addressable by byte

=*\Words and half words aligned

" E.g., 4-byte word = base address divisible by 4; value stored
in locations base+{0,1,2,3}

" Cortex-M typ. little-endian: least-significant byte stored in
base address (vs. most-significant byte in big-endian)

sExample: Write all legally accessible values >

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Oxaaaaaaab

Oxaaaaaaaa

Oxaaaaaaa9

Oxaaaaaaal8

Oxde

Oxad

Oxbe

Oxef

Load/store operations

"ARM is a load-store architecture
* Memory values can only be accessed through load/store instructions

= All data processing takes place in registers
" Dramatically reduces complexity of ISA and implementation

*LDR <Rt>,<address>: load (32-bit) word in M[address] into Rt
*STR <Rt>,<address>: store Rt’s (32-bit) content into M[address]

=Other opcodes for half-word, byte, etc.

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Loading sub-word data sizes

"How to load half-word/byte data into (32-bit) register?
» Unsigned: Pad with zeroes—e.g., 0x82 (130) — 0x00000082
= Signed: Sign extension—e.g., 0x82 (-126) — Oxffffff82

Byte LDRSB LDRB
Half-word LDRSH LDRH

ARM

=Can also sign-extend sub-word value already in a register:

Byte SXTB UXTB
Half-word SXTH UXTH

ARM

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Addressing modes

sAddressing modes: Calculate effective address on the fly
" Few modes = simpler ISA and implementation

" [<Rn>,<offset>]: effective address is <Rn>+<offset>
" <Rn> is the “base register;” it can be RO-7, PC, or SP
» <offset> can be immediate constant or another register <Rm>

" [<Rn>,<offset>]!: Write effective address back to base register
(“pre-update”)

" [<Rn>] ,<offset>: Use base register as effective address, then
update base register with newly calculated address (“post-update”)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Condition codes

sSpecial APSR register holds four one-bit condition codes
" Application Program Status Register
" N: Result of last status-updating instruction was Negative
= 7: Result of last status-updating instruction was Zero
" C: Last status-updating instruction produced Carry
" \/: Last status-updating instruction produced oVerflow

=“s” suffix indicates ALU instruction updates APSR
=[F.g., SUB VS. SUBS, ADC VS. ADCS, etc.
= Compare instructions cMp, CMN always update APSR (obviously)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

B ra n C h e S Mnemonic extension Meaning Condition flags
EQ Equal Z—1
="Goal: change program flow ' ot eaval £=0
(sa Carry set CcC=1
"Unconditional: B <label> cct Carry cleas c=o
. . . . Minus, negative N=
= <|abel> limited to within ~2 kB of branch | Z = :
PL Plus. positive or zero N=0
=Conditional: BXX <label> e Overflow !
. . . . VC No overflow V=0
. ~nJ
<label> limited to within ~256 B of branch | — i e p——
- XX one Of > LS Unsigned lower or same C=0o0rZ=1
CE Signed greater thanorequal N=—=V
LT Signed less than NI=V
CT Signed greater than Z=—0andN=V
LE Signed less than or equal Z=—lorNI=V
None (AL) 4 Always (unconditional) Any
ARM

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Pseudo-instructions

=Assembly-like syntax, but emulated
" Another instruction can accomplish the same

» Small block of code (less frequent)
" Part of the ISA specification; sometimes assembler-specific

sExample: LDR <Rt>,<immediate>
" |f <immediate> representable with 8 bits, use MOV <Rt>,<immediate>
» Otherwise (one possible solution):

= Place <immediate> in program’s literal pool (well-known memory block)
= Use LDR <Rt>, [PC,<offset>] where <offset> indicates position of literal relative to current PC

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

Example code: What does this do?

begin:
LDR
LDR
LDR

next:
LDR
LDR
CMP

Intro to Assembly Language

Rl ,=addrl
R2 ,=addr2
R3 ,=addr3

R4, [R1] ,#4
R5, [R2] ,#4
R4, #0

BEQ end
CMP R5, #0
BEQ end
STR R4, [R3],#4
STR R5, [R3],#4
B next
end:
WE'I

ECE 3140/ CS 3420 — EMBEDDED SYSTEMS

