
Introduction to 
Assembly Language
ECE 3140/CS 3420 — EMBEDDED SYSTEMS

© 2019 José F. Martínez. Unauthorized distribution prohibited.



What is assembly language?
§Assembly code: Human-readable, quasi-isomorphic translation of 
machine code
§Ok, but what is machine code?

§Machine code: Binary-encoded instructions describing a program
§Directly executable by the processor

ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 2Intro to Assembly Language



§Processor:
§ Fetches next instruction from program
§Decodes instruction
§Executes according to instruction
§Rinse and repeat

Machine code example (made up)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 3

1 1 0 1 0 1 0 1 0 0
1 0 0 1 1 1 1 1 1 1

PC ⟶

Program counter: Keeps track of
where processor is in the program

program



§Assume:
§16 different instructions
§8 registers to store data (also PC, Z)
§Destination register is also source operand

§Processor:
§ Fetches next instruction from memory
§Decodes instruction
§Executes according to instruction
§Rinse and repeat

Machine code example (made up)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 4

1 1 0 1 0 1 0 1 0 0

op src1/dst src2

R[dst] ⟵ R[src1]–R[src2];
Z ⟵ R[dst] == 0; PC ⟵ PC+1

1 1 0 1 0 1 0 1 0 0
1 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1 1

op

PC ⟵ Z ? PC+1 : PC+offset

PC ⟶

offset



§Assume:
§16 different instructions
§8 registers to store data (also PC, Z)
§Destination register is also source operand

§Processor:
§ Fetches next instruction from memory
§Decodes instruction
§Executes according to instruction
§Rinse and repeat

Assembly equivalent (made up)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 5

SUB 2 4

op src1/dst src2

R2 ⟵ R2–R4; Z ⟵ R2 == 0; PC ⟵ PC+1

SUB R2,R4
BNZ next

BNZ -1

op

PC ⟵ Z ? PC+1 : PC–1

next:

offset



Who programs in assembly?
§Nowadays, mostly people that enjoy pain and suffering
§Ok, some low-level tasks best in assembly

§ECE 3140/CS 3420 students (for a few weeks at least)

§Compilers/interpreters extremely good at generating
fast machine code from high-level languages
§Tendency for bloated executables (e.g., libraries)
§Not always fastest (e.g., critical code block)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 6

iDownloadBlog



So why study assembly?
§Understand hardware-software interface
§What functionality does the hardware provide?
§How are high-level language constructs supported?
§ Subroutines, recursion

§How are system services provided?
§ Dynamic allocation of variables
§ Interaction with I/O devices
§ Multitasking

§Build “bare-metal” (embedded) systems
§Minimize code bloat; speed up critical code blocks

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 7



Instruction Set Architecture (ISA)
§Contract between hardware and software
§Hardware free to implement it in different ways
… as long as software can’t tell the difference!
§ Improvements across processor generations
§Design choices across product families (e.g., high-performance vs. low-energy)
§High-performance trickery (e.g., out-of-order execution)

§Software free to use any syntax
… as long as it can be translated into working assembly program!

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 8



A simple implementation (made up)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 9

{SE(offset),0}

PC

Adder+1

D
ecoder

regs

r/w
regA
regB
dst
data_in

ALU data
mem

dataA

dataB

V C Z N

op

SE

IMM
imm?

M_address

Data_in

store? load?

0
1

0
1

inst. m
em

branch outcome

0
1

branch/type?

0
1
Z
Z’
N
N’
C
V

0
1
2
3
4
5
6
7

SUB R2,R4
BNZ next

next:

Adapted from D. Albonesi

branch outcome



A complex implementation (AMD Athlon)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 10

Anandtech



ARM Cortex-M architecture
§32-bit datapath (operands and results)
§32-bit addressing space (memory size)
§Thumb ISA (vs. ARM ISA in Cortex-Ax)
§Most instructions 16-bit encoding for compactness
§ Some instructions 32 bits to encode additional functionality

§Different products: M0, M0+, M3, M4, M7
§ “Core” ISA is the same; extensions for functionality

§ARM is fabless: License IP, implementation up to customer

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 11



Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 12

ARM



Instruction Type Instructions
Move MOV
Load/Store LDR, LDRB, LDRH, LDRSH, LDRSB, LDM, STR, STRB, STRH, STM
Add, Subtract, Multiply ADD, ADDS, ADCS, ADR, SUB, SUBS, SBCS, RSBS, MULS
Compare CMP, CMN
Logical ANDS, EORS, ORRS, BICS, MVNS, TST
Shift and Rotate LSLS, LSRS, ASRS, RORS
Stack PUSH, POP
Conditional branch IT, B, BL, B{cond}, BX, BLX
Extend SXTH, SXTB, UXTH, UXTB
Reverse REV, REV16, REVSH
Processor State SVC, CPSID, CPSIE, SETEND, BKPT
No Operation NOP
Hint SEV, WFE, WFI, YIELD

Instruction set summary

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 13

ARM



Instruction format
§General format: op <dst> <src1> <src2>
§There may be fewer source operands and/or no destination
§Operands may be registers, or (sometimes) immediate constants

§Some examples:
§ SUB R7,R2,R4 (“subtract”)
§ R7 ⟵ R2–R4

§ SUBS R2,R2,#3 (“subtract and update status flags”)
§ R2 ⟵ R2–3; update status flags (SUBS vs. SUB) according to result (will cover shortly)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 14



Instruction format
§General format: op <dst> <src1> <src2>
§There may be fewer source operands and/or no destination
§Operands may be registers, or (sometimes) immediate constants

§Some more examples:
§ CMP R2,R4 (“compare”)
§ Update status flags (will cover shortly) according to result of R2–R4; drop result

§ BNE <label> (“branch if not equal”)
§ Jump (branch) to instruction at position <label> in the program if status flag Z ≠ 0
§ Operand actually encoded as offset from current position in the program

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 15



Operands
§General-purpose registers
§R0-R7 “low registers,” accessible by all instructions
§R8-12 “high registers,” not accessible by many 16-bit instructions
§R13-15 reserved for special purposes (will cover shortly)
§ R15 = “program counter” (PC); R14 = “link register” (LR); R13 = “stack pointer” (SP).
§ Write to at your own peril!

§Immediate values
§Encoded within the instruction format

§Memory locations (will cover shortly)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 16



Instruction encoding
§32-bit instruction if bits [15:11]
of the first half-word are 0x1d-f
§Otherwise, 16-bit instruction

§Opcodes must be unambiguous
§ First few bits tell decoder what to

expect in the rest of the instruction

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 17

ARM



Example: sub (immediate)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 18

ARM

ARM



Memory organization
§Integer value types: byte (8b), half word (16b), word (32b)
§32-bit addresses = 4 GB addressing space
§Addressable by byte

§Words and half words aligned
§E.g., 4-byte word ⟹ base address divisible by 4; value stored

in locations base+{0,1,2,3}
§Cortex-M typ. little-endian: least-significant byte stored in

base address (vs. most-significant byte in big-endian)

§Example: Write all legally accessible values

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 19

0xbe

0xef

0xde

0xad

0xaaaaaaa8

0xaaaaaaa9

0xaaaaaaaa

0xaaaaaaab



Load/store operations
§ARM is a load-store architecture
§Memory values can only be accessed through load/store instructions
§All data processing takes place in registers
§Dramatically reduces complexity of ISA and implementation

§LDR <Rt>,<address>: load (32-bit) word in M[address] into Rt
§STR <Rt>,<address>: store Rt’s (32-bit) content into M[address]
§Other opcodes for half-word, byte, etc.

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 20



§How to load half-word/byte data into (32-bit) register?
§Unsigned: Pad with zeroes—e.g., 0x82 (130) ⟶ 0x00000082
§ Signed: Sign extension—e.g., 0x82 (-126) ⟶ 0xffffff82

§Can also sign-extend sub-word value already in a register:

Signed Unsigned

Byte LDRSB LDRB

Half-word LDRSH LDRH

Signed Unsigned

Byte SXTB UXTB

Half-word SXTH UXTH

Loading sub-word data sizes

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 21

ARM

ARM



Addressing modes
§Addressing modes: Calculate effective address on the fly
§ Few modes ⟹ simpler ISA and implementation

§[<Rn>,<offset>]: effective address is <Rn>+<offset>
§<Rn> is the “base register;” it can be R0-7, PC, or SP
§<offset> can be immediate constant or another register <Rm>

§[<Rn>,<offset>]!: Write effective address back to base register 
(“pre-update”)
§[<Rn>],<offset> : Use base register as effective address, then 
update base register with newly calculated address (“post-update”)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 22



Condition codes
§Special APSR register holds four one-bit condition codes
§Application Program Status Register
§N: Result of last status-updating instruction was Negative
§ Z: Result of last status-updating instruction was Zero
§C: Last status-updating instruction produced Carry
§V: Last status-updating instruction produced oVerflow

§“S” suffix indicates ALU instruction updates APSR
§E.g., SUB vs. SUBS, ADC vs. ADCS, etc.
§Compare instructions CMP, CMN always update APSR (obviously)

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 23



Branches
§Goal: change program flow
§Unconditional: B <label>
§<label> limited to within ~2 kB of branch

§Conditional: BXX <label>
§<label> limited to within ~256 B of branch
§XX one of 

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 24

ARM



Pseudo-instructions
§Assembly-like syntax, but emulated
§Another instruction can accomplish the same
§ Small block of code (less frequent)
§Part of the ISA specification; sometimes assembler-specific

§Example:  LDR <Rt>,<immediate>
§ If <immediate> representable with 8 bits, use  MOV <Rt>,<immediate>
§Otherwise (one possible solution):
§ Place <immediate> in program’s literal pool (well-known memory block)
§ Use  LDR <Rt>,[PC,<offset>] where <offset> indicates position of literal relative to current PC

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 25



Example code: What does this do?
begin:

LDR R1,=addr1
LDR R2,=addr2
LDR R3,=addr3

next:
LDR R4,[R1],#4
LDR R5,[R2],#4
CMP R4,#0

BEQ end
CMP R5,#0
BEQ end
STR R4,[R3],#4
STR R5,[R3],#4
B next

end:
WFI

Intro to Assembly Language ECE 3140/ CS 3420 — EMBEDDED SYSTEMS 26


