ECE3140 / CS3420 Embedded Systems

Lecture 1. Introduction

Prof. José Martínez

Ack: Rajit Manohar, Ed Suh

Instructor

Prof. José Martínez, ECE

- Research area: computer architecture
- Contact Information
 - 336 Rhodes Hall
 - martinez@cornell.edu
 - (607) 255-1874
- Office Hours: TBD
 - If my door is closed, then knock!
- Teaching
 - ECE 3140/CS 3420: Embedded Systems
 - ECE 5750: Advanced Computer Architecture

What is an Embedded System?

- A computer system: Hardware + Software
- Embedded in another device or physical world

Embedded Systems Attributes

- Interfacing with the world
 - Sense environment & control device
- Concurrency
 - Manage multiple activities
- Resource constraints
 - Costs, power/energy, weight, size
 - Often fixed/limited functionality
- Real-time constraints
- Reliability
 - Long lifetime, environmental conditions
- Security
- Diagnostics and maintenance

Abstraction Layers

3140: Hardware-Software Integration

3140: Hardware-Software Integration

Hardware for This Class

NXP FRDM-K64F

Image from NXP, formerly Freescale Semiconductors

ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

L1 – Introduction 8

Programming Languages for Embedded Systems

Source: EETimes. 2017 Embedded Markets Study

ECE 3140 / CS 3420 – Embedded Systems, Spring 2019. Unauthorized distribution prohibited.

L1 – Introduction 9

Why Assembly and C?

Topics

- Assembly language programming
 - Link to a high-level programming language: C
- Interrupts and I/O
- Managing interrupts: Concurrency
 - Concurrency models
 - Tasks/threads
 - Synchronization
- Real-time constraints and scheduling
- Communication protocols

Computer Engineering Curriculum

- ECE 3140/CS 3420 ← This class
- CS 4410: Operating Systems
- ECE 4740: Digital VLSI
- ECE 4750/CS 4420: Computer Architecture
- ECE 4760: Designing with Microcontrollers
- ECE 57xx/CS 54xx: Grad-level classes

Class Overview

Lectures

TR 1:25-2:40pm in 155 Olin Hall

Sections

- Help with material, lab
- Supplementary material

Labs

Implementation of concepts covered in class

Problem sets

Review material, preparation for prelims

In-class quizzes

See if you are keeping up with the class

Grading

- Problem sets: 5%
- Quizzes: 10%
- Exams: 40%
 - Prelim 1: 17%
 - Prelim 2: 23%
- Labs: 45%

Textbook

- No required textbook
 - We will draw materials from many places

References

- "Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach" by Alexander G. Dean
- "Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications" by G. Buttazzo, PDF available through Cornell library

Reading

 We will release papers and other resources as we cover each topics

Problem Sets and Quizzes

- Problem sets: Paper-and-pencil problems
 - Checked for completeness, but not graded for correctness

Quizzes

- Covers previous week's lectures
- At the beginning of a class (typ. Tuesday)
- Use iClicker
- No make-up
- Lowest quiz score will be dropped
- 25% participation, 75% performance

Evening prelims

- Prelim 1 (17%) March 19th
- Prelim 2 (23%) April 30th
- No books, notes, or electronics of any kind

No Final Exam

Labs

- Six labs: 5 fixed assignments and 1 project
 - We will suggest topics
 - Whatever you want (within reason)
- All lab assignments are done as a group of two
- No scheduled lab sessions
 - You can do them at home
 - Open lab hours to provide help

Submission Guidelines

Use CMS

- http://cms.csuglab.cornell.edu/
- Make sure to include name and netid
- Submissions must be your own individual effort
 - Sharing written solutions strictly prohibited
 - Discussing problems, approaches, etc. permitted
- Check your submission
 - Hash value

Rules

Late Policy

- CMS marks submissions late the instant they are due
- You must upload an assignment before the deadline
- Marked late = ZERO (your lowest non-zero score)
- You are allowed ONE "slip day" (24 hours)
 - No need to request it

Regrade Policy

- Submit a regrade request on CMS if you feel a grading mistake has been made
- The regrade request must be received within one week after a grade is released

Resources

Piazza:

- Announcements, material, questions (self-enroll)
- Look up answers before posting a question
- You may send questions privately to staff through Piazza, but only if they contain sensitive/private information
- **Email:** Generally not allowed (and ignored)
 - Exception: Email to instructor of sensitive/private nature

Course Expectations

- Engineering solves world problems by using technology creatively. I invite and expect every student to contribute creatively as part of their learning process.
- Success in engineering depends critically on teamwork. I invite and expect every student to engage in constructive discourse, to bring their perspective, and to be accepting of others'.
- Degrading, abusing, harassing, silencing, or dismissing others in the process is not acceptable behavior. It is also bad engineering.
- I invite and expect every student to maintain the highest ethical standards.

Academic Integrity

- Search for "Cornell AIC"
 - http://cuinfo.cornell.edu/Academic/AIC.html
- Discussions are encouraged
- Sharing solutions is **not** permitted
 - Not submitting far better than cheating
 - In case of doubt, refrain and ask

• Use discussion boards consistently with the AIC!