Prelab Problem 6.1: Op-Amp Gain-Bandwidth Product

Assume you have an op-amp with the following s-domain model:

$$
\mathrm{V}_{\text {out }}(s)=\left(\mathrm{V}_{\text {in }}^{+}(s)-\mathrm{V}_{\text {in }}^{-}(s)\right) \frac{\mathrm{A}_{\mathrm{o}}}{1+s / \omega_{\mathrm{c}}}
$$

which is to say:

$$
\mathrm{A}_{\mathrm{V}}(s)=\frac{\mathrm{A}_{\mathrm{o}}}{1+s / \omega_{\mathrm{c}}}
$$

where $s=j \omega$ for a sinusoidal drive with radial frequency ω.
(a) Assuming $A_{o} \gg 1$, at what frequency ω (in rad/s) is the magnitude of the gain $\left|A_{V}(j \omega)\right|=1$?

Fig. 1. Inverting amplifier.
(b) If this op-amp is used to build an inverting amplifier (as shown in Fig 1), what is the transfer function of the amplifier gain $G(s) \equiv \mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}$ in the s-domain? Write your solution in terms of R_{1}, R_{F}, A_{o} and ω_{c}. What is the value of the pole?
(c) Given that $A_{o}=10^{5}$ and $\omega_{c}=62.8 \mathrm{rad} / \mathrm{s}$, sketch (by hand) the magnitude Bode plot for $R_{F} / R_{1}=100$, and $R_{F} / R_{1}=10$.

Prelab Problem 6.2: Equalization

One of the problems in digital communications is equalization. The "channel" (often just a wire) over which bits are sent is imperfect, and, so, distorts one's signal between transmitter and receiver. However, if you know the properties of the channel, you can build a circuit that cancels those properties (or at least the most egregious ones), increasing the bandwidth of the channel.
(a) Model the channel as a wire (as shown in Fig. 2a) with the following properties: $\mathrm{L}=1.2 \mathrm{mH}$, $\mathrm{R}=330 \Omega, \mathrm{C}=100 \mathrm{nF}$. This is a fairly reasonable first-order model for a 500-meter long, 0.1 mm thick wire. What is $H(s) \equiv \mathrm{V}_{2}(s) / \mathrm{V}_{1}(s)$? Where are its poles?
(b) Sketch a magnitude Bode plot for this "wire" from 100 Hz to 1 MHz . What is its $3-\mathrm{dB}$ bandwidth?

Fig. 2. (a) Channel model, and (b) equalizer circuit.
Our goal is to use an equalizer circuit to cancel the lowest-frequency pole of the channel by placing a zero at the same frequency.
(c) For the equalizer circuit shown in Fig. 2b (assuming that the op-amp is ideal), find $G(s) \equiv$ $\mathrm{V}_{\text {out }}(s) / \mathrm{V}_{2}(s)$ in terms of $\mathrm{R}_{\mathrm{F}}, \mathrm{C}_{1}$ and R_{1}. What is the location (in terms of $\mathrm{R}_{\mathrm{F}}, \mathrm{C}_{1}$ and R_{1}) of the pole and zero of $G(s)$?
(d) Choose R_{F}, C_{1} and R_{1} so that the zero of the equalizer cancels the pole of the "wire", and the pole of the equalizer corresponds to a frequency of 50 kHz . Sketch a magnitude Bode plot of the equalizer's response $G(s)$.
(e) What is the combined transfer function of the wire plus equalizer (as shown in Fig. 3) $\mathrm{V}_{\text {out }} / \mathrm{V}_{1}=H(s) G(s)$? Sketch the combined magnitude Bode plot. What is the (approximate) $3-\mathrm{dB}$ bandwidth of this equalized channel?

Fig. 3. Combined circuit: wire plus equalizer.

