Issued: March 8, 2019, 10 am Due: March 19, 2019, 12:20 pm

Prelab Problem 4.1: First-order RC and RL circuits

Consider the RC and RL circuits shown in Fig. 1. Each circuit is driven by a voltage signal source $v_s(t)$ with a source resistance (i.e., Thevenin resistance) $R_s = 50 \Omega$.

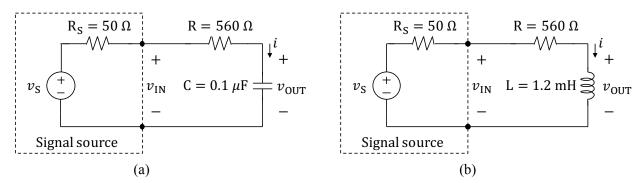


Fig. 1. (a) RC circuit, and (b) RL circuit.

- (a) What is the time constant associated with the RC circuit?
- (b) For the RC circuit, if the voltage signal source is set up to produce a unit step, i.e., $v_{\rm S}(t) = 1 \mbox{V} \cdot u(t)$, determine $v_{\rm OUT}(t)$ and $v_{\rm IN}(t)$ for time t > 0. Hint: what are $v_{\rm OUT}(0^+)$ and $v_{\rm OUT}(t \to \infty)$, and to find $v_{\rm IN}(t)$ consider i(t).
- (c) What is the time constant associated with the RL circuit?
- (d) For the RL circuit, if the voltage signal source is set up to produce a unit step, i.e., $v_S(t) = 1 \text{V} \cdot u(t)$, determine $v_{\text{OUT}}(t)$ and $v_{\text{IN}}(t)$. Hint: what are $v_{\text{OUT}}(0^+)$ and $v_{\text{OUT}}(t \to \infty)$, and to find $v_{\text{IN}}(t)$ consider i(t).

Prelab Problem 4.2: Second-order RLC circuit

Consider the parallel RLC circuit shown in Fig. 2, which is driven by a voltage signal source $v_S(t)$ with a source resistance $R_S = 50 \Omega$.

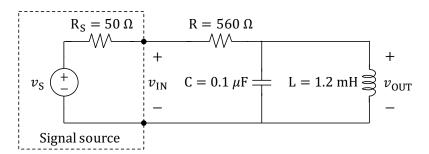


Fig. 2. Parallel RLC circuit.

- (a) What is the equivalent parallel resistance in this RLC circuit?
- (b) Calculate the damping factor α and the undamped natural radial frequency ω_0 for this circuit, and determine the type of response (under damped, over damped, or critically damped) which $v_{\text{OUT}}(t)$ will have?
- (c) If the circuit is under damped, calculate the damped natural radial frequency ω_d and the period of oscillation T.
- (d) If the voltage signal source is set up to produce a unit step, i.e., $v_S(t) = 1V \cdot u(t)$, determine $v_{OUT}(t)$ for time t > 0.