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ECE/ENGRD 2100 – Spring 2019 Issued: February 1, 2019, 10 am 
Lab 2 Lab Report Due: February 22, 2019, 11:59 pm 
 

Complex DC Circuits 
Goals: 
1. Design, build and characterize a simple 5-bit digital-to-analog circuit based on resistor ratios. 
2. Design, build and characterize a more complex 5-bit digital-to-analog circuit based on unit 

resistors. 
3. Model both structures in MATLAB or Python. 

Preparation: 
1. Carefully review this document. 
2. Be sure to understand the analysis of the circuits to be built: covered in Prelab problems 1 

and 2. 
3. Review lecture notes on node analysis, superposition, and Norton/Thevenin equivalents. 
4. Review instrumentation from Lab 1 (you may want to bring it with you). 

Experiments: 
1. Resistor ratio-based Digital-to-Analog Converter (DAC) 

The goal is to build a 5-bit DAC with a Thevenin equivalent Resistance RTH= 50 Ω and a 
voltage VTH = (16b4+8b3+4b2+2b1+ b0)/32, where bk is the kth bit (a voltage set to either 1 V 
or 0 V), for k = 0, 1, 2, 3, or 4, of some digital value. 

The schematic and expected protoboard design are shown in Fig. 1. Note that the “voltage 
sources” shown in Figure 1a are actually implemented by switches which either connect to a 
dc voltage (Vdc = 1V) or to ground, depending on the bit setting. 

 
Fig. 1: Simple DAC, schematic and protoboard 
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(a) Get Parts: Based on prelab problem 1, you will need six resistors, and a protoboard with 
a switch array already mounted. Compute the resistor values you will need, and then get 
those whose values most closely approach your design values. Measure and record their 
actual values using the DMM. Be sure that they are the right order of magnitude (i.e., 50 
Ω not 50 kΩ); people have been putting resistors in the wrong bins! 
 

(b) Assemble the circuit, as shown in Fig. 1. Note that each switch output can be treated as 
a voltage source whose values is equal to Vk= bk·Vdc (where bk is the kth bit, for k = 0, 1, 
2, 3, or 4), that is, when the kth bit bk=0, Vk=0, when bk=1, Vk =Vdc.  Vdc is provided 
externally (next step). Also: define b4 as the left-most switch, as shown in Fig. 1; 
ignore the numbers printed on the switch itself. 

 

(c) Provide power to the circuit: In order for the switch array to actually provide “1’s” and 
“0’s” it must have a DC power supply. This will be provided by one of the SMU’s on 
your bench, configured manually (see Fig. 2). Turn on SMU1. To configure it as a voltage 
supply, push the button marked “V” under “source”. To set the voltage push “edit” once 
and then use the left/right arrows to select the digit to change, and the up/down arrows to 
select the value. Configure for 1V. Push the “enter” button. Now, to set current 
compliance, push the “edit” button twice. You will need to push the up arrow under 
“range” three times to get the order of magnitude you need, then use the up/down, 
left/right “EDIT” to set the compliance to 100 mA. Attach the outputs to the VDC inputs 
on your board (red-to-red, black-to-black). This will provide the switch array with 0 V 
and 1V.  In order to read back the amount of current being supplied, push the button 
marked “I” under “MEAS”. In order to configure SMU2 to manually read out the output 
voltage, turn on its power, and push “I” under Source, and check to be sure “Isrc” is 0 
(this is the default). Now push “V” under “MEAS”. Connect SMU to the output of your 
circuit, black to the common node, red to the output node. 

	
Fig. 2: critical buttons for using an SMU in manual mode 

 
(d) Check basic functionality: Set all of the switches to “0” (all the way “down”), and push 

the ON/OFF buttons on both SMUs (so that they are ON). SMU1 should show current 
magnitude less than 1 µA, and SMU2 should show voltage less than 1 mV.  Now toggle 
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b4 to a “1” (“1” is all the way “up”: switches neither “up” nor “down: are disconnected 
and look like open circuits, which will give weird results): this should make SMU2 show 
approximately 0.5 V, and SMU1 show a current of about 5 mA.  If you see dramatically 
different numbers, get help from a TA. Note: if “Cmpl” starts blinking, your SMU is 
hitting compliance: if the current shown is much less than compliance, but Cmpl is still 
blinking, that means your SMU has become stupid and needs to be powered down and 
set up again.	
 

(e) Step through the 32 digital numbers by toggling the switches.  In each case, record the 
output voltage displayed on SMU2, and current consumption of the circuit displayed on 
SMU1. Round off to the nearest 1 mV and 0.01 mA.	
 

(f) Confirm the Thevenin equivalency of the circuit with an SMU. This requires 
extracting output I-V curves. Now configure the SMUs to run an automatic sweep using 
the lab tracer software. Configure SMU1 (connected across “Vdc”) as a bias voltage, 
with V = 1 V, compliance = 100 mA, also ensure that SMU is set to measure voltage and 
current (check “readback voltage” and “measure current in the configuration panel).  
Configure SMU2 (connected across Vout) to sweep voltage from 0 V to 1 V in 101 steps 
(compliance = 100 mA), and measure voltage and current. Run and save data for digital 
input settings: 00000, 01010, 10101, and 11111. Plot current_2 vs voltage_2 in each case. 
Do the results make sense (especially: does the open circuit voltage, when current = 0, 
equal what you got in part e)? If not, ask for help from a TA.	

  
2. Ladder Digital-to-Analog Converter (DAC) 

In this part you will build a somewhat more advanced DAC structure, based on Prelab, 
problem 2. Thevenin equivalent resistance RTH = 50 Ω and a voltage VTH = (16b4+8b3+4 
b2+2b1+ b0)/32, but to do so using only 100 Ω and 50 Ω resistors.  

(a) Get Parts: From prelab problem 2, you will need ten resistors and a protoboard with the 
switch array already mounted. Compute/decide the resistor values you will need for each 
resistor, and then get resistors whose values most closely approach your design. Measure and 
record their actual values using the DMM.  

(b) Assemble the circuit, as shown in Fig. 3. As in part 1, each switch output can be treated as 
a voltage source whose values is equal to Vk= bk·Vdc (where bk is the kth bit, and k can be 0, 
1, 2, 3, or 4), that is, when the kth bit bk=0, Vk=0, when bk=1, Vk =Vdc. Vdc is provided 
externally (next step). 

(c) Provide power to the circuit: Use the same arrangement as in part 1c. If the SMU is 
unresponsive, try pushing the small button on the lower left marked “FRONT/REAR” 

(d) Check basic functionality: Set all of the switches to “0”, and push the ON/OFF buttons on 
both SMUs (so that they are ON). SMU1 should show current magnitude less than 1 µA, and 
SMU2 should show voltage less than 1 mV.  Now toggle b4 to a “1”: this should make SMU2 
show approximately 0.5 V, and SMU1 show a current of about 5 mA.  If you see dramatically 
different numbers, get help from a TA. 
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Fig. 3: Ladder DAC, schematic and protoboard 

(e) Step through the 32 digital numbers by toggling the switches. In each case, record the 
output voltage from SMU2, and current consumption of the circuit from SMU1. Round off 
to two significant digits. 

(f) Confirm the Thevenin equivalency of the circuit with an SMU. This requires extracting 
output I-V curves. Now configure the SMUs to run an automatic sweep using the lab tracer 
software. Configure SMU1 (across Vdc) as bias voltage, with V = 1 V, compliance = 100 mA 
and measure voltage and current. Configure SMU2 (across Vout) to sweep voltage from 0 V 
to 1 V in 101 steps, and measure voltage and current. Run and save data for digital input 
settings: 00000, 01010, 10101, and 11111. Also plot current_2 vs voltage_2 in each case. Do 
the results make sense?  If not, ask for help from a TA.	

 
Wind down: 
Clean up around your bench and return any components back to their storage bins. Please DO 
NOT disassemble the switch array-protoboard combination! Be sure all data is collected and 
placed on your own storage media. Delete all files on your desktop or at least organize them in a 
folder. ECE makes no guarantee that these files left on your desktop will remain over time. 
 
Analysis: 
1. For the simple DAC, plot the measured output voltage vs the binary number N (that is 00000 

= 0, 00001 = 1, 00010 = 2, etc.).   

2. Also, plot the current consumed vs the binary number N. Explain its shape. 
3. Plot the difference (error) between the measured output voltage and the ideal voltage 

(16V4+8V3+4V2+2V1+V0)/32, vs the binary number N. Is there an obvious pattern to the 
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error, as a function of N? What is the largest error? What is the mean-square-error (MSE: 
square the error for each setting, take the mean)? Describe/try to explain the shape of this 
error curve.   

4. Plot the I-V curves obtained from the SMU for the binary number N=0, N=10, N=21, and 
N=31 and extract the output resistance from their slopes. 

5. For the ladder DAC, plot the measured output voltage vs the binary number N (that is 00000 
= 0, 00001 = 1, 00010 = 2, etc).   

6. Also, plot the current consumed vs the binary number N. Explain its shape. 

7. Plot the difference (error) between the measured output voltage and the ideal voltage 
(16V4+8V3+4V2+2V1+V0)/32, vs the binary number N. Is there an obvious pattern to the 
error, as a function of N? What is the largest error? What is the mean-square-error (MSE: 
square the error for each setting, take the mean)? Describe/try to explain the shape of this 
error curve.   

8. Plot the I-V curves obtained from the SMU for the binary number N=0, N=10, N=21, and 
N=31 and extract the output resistance from their slopes. 

9. Model the two DAC Circuits in MATLAB/Python as described in “Appendix A: 
Numerical Circuit Modeling” below. 
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Appendix A: Numerical Circuit Modeling 

 

Goals: 
1. Practice using matrix-formulations of node-voltage equations for fast solutions. 
2. Predict Behavior of two Digital-to-Analog Converter circuits based on ideal and real resistor 

values. 
3. Compare simulated results to formal analysis (Prelab 2) and measured results (Lab 2). 

 
Many circuits are simply too large to realistically solve by hand (that is they have too many 
nodes). Even in cases where other approaches work (e.g., source transforms) it can still be 
cumbersome in cases where the components are not regular values. In such cases, it often makes 
sense to use a computer to solve the system of equations for us.  
 
1. Example Circuit 

Here is a brief, worked example of how to use 
MATLAB to solve node voltage analysis: (If 
you prefer to use python, the same approach 
should work, with slightly different syntax). 
 
Start with the circuit shown. 
Let R1 = 100 Ω, R2 = 200 Ω, R0 = 100 Ω, RA 
= 50 Ω, R1 = 50Ω, Vin = 1V. 
 
Write node voltage equations: 
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Write as a matrix: 
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  which we can also write as 𝚤2 = 𝐺𝑣 

 
Now open MATLAB, and in the command window (or in a new .m-file) Type: 
R1=100; 
R2=200; 
R0=100; 
RA=50; 
Vin=1; 
in=[Vin/R2; 0] 



 

 7 

G=[1/R2+1/RA+1/R0, -1/RA; 
-1/RA, 1/RA+1/R1] 

Now, to solve, just compute 𝒗 = 𝑮&𝟏8𝒏 by typing: 
v=inv(G)*in 
which should return: 
v = 
    0.2308 
    0.1538 
That is, V1=0.2308V, and V2 = 0.1539V 
 
If you also want to find the power supplied by Vin: 
Pdiss=Vin*(Vin-v(1))/R2 

 
You can confirm these results with hand calculation using whichever analysis method you 
prefer. 
 

2. Binary-Weighted Resistor DAC 
 

 
 

(a) Before writing any code, start by using KCL on the output node to write a single equation 
for Vout as a function of V0-V4, RG, and R0-R4.  Also write an equation for the power 
supplied by each voltage source (V0-V4) as a function of that voltage, Vout, and the 
relevant resistance, as well as an equation for the total power consumed (which is just the 
sum of all the individual powers supplied). 
 

(b) Now download and open the MATLAB file “code_for_DACs”. Define your resistors’ 
values at the beginning of the script (after the definition of “Codes” but before the for-
loop) based on your analysis from Prelab problem 1. That is, type: 

RG=1500; 
R0=1500; 
etc… (don’t actually use these values!) 

 

(c) Now, inside the for-loop include your equation for Vout in terms of these resistances and 
V0, V1, V2, V3, and V4 (which are already defined) after the lines where the voltages were 
defined. You will want to make Vout an indexed value (Vout(n)) so that you can plot it vs 
n later. Also compute the total power supplied by the voltage sources, and index that as 
well (that is, write an equation for Pdissg(n)). Be sure to end each line of code with 
semicolon or MATLAB will print everything as it goes. 
 

(d) Finally, add some code at the end of the script to plot Vout vs N, and P vs N. 
 

(e) Run your code (F5 is the hot key to save and run). Resolve your inevitable bugs. And 
look at your plots. Do your results make sense? If you want to save this data, type  

save 'filename' N Vout Pdiss  
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Where you should replace filename with the name of the file. 
 

(f) Now, change your resistor definitions to reflect the actual resistor values you used in lab 
and re-run. 
 

(g) Overlay your simulated and measured results for Vout vs N and Psupp vs N. Comment on 
similarities/discrepencies. 
 

3. Resistor-Ladder DAC 

 
 

(a) Before writing any code, write the node voltage equations for VA0 through VA4 (where 
Vout = VA4), and formulate them in vector-matrix form. Also write an equation for the 
power from each voltage source (V0-V4) as a function of that voltage, of the internal nodes 
(VA0-VA4), and the relevant resistance, as well as an equation for the total power 
consumed. 
 

(b) Now make a copy of your earlier code, and based on your analysis from Prelab problem 
1, define RA, R0A-R4A and R0B-R4B. 

 

(c) Define your matrix in terms of these resistors (it should be a 5x5 matrix) and compute its 
inverse (that is write code to define the matrix and its inverse). Note once you have 
defined a matrix G, its inverse in MATLAB is just R=inv(G). 

 

(d) Now, inside the for-loop define the input vector based on V0-V4, and compute the node-
voltage vector based on the input vector and matrix.   

 

(e) Based on this vector, extract Vout(n) and P(n). (remember, Px for each input is (Vx-
VAx)/RXA, total power is the sum of Px across x=0-4) 

 

(f) Finally, add some code at the end of the script to plot Vout vs N, and P vs n.   
 

(g) Run your code, resolve your inevitable bugs. And look at your plots. Save them. Do your 
results make sense? 

 

(h) Now, change your resistor definitions to reflect the actual resistor values you used in lab 
and re-run. 

 

(i) Overlay your simulated results from h. and measured data for Vout and Psupp. Comment. 
 

 
 


