Helpful readings for this homework: Nilsson and Riedel, Chapter 15, Chapter 12, Chapter 13 and Chapter 9.

Grading Criteria

Show all work, as each problem will be graded using the grading criteria given below:

- 100% of maximum score if approach is correct and answer is also correct
- 80% of maximum score if approach is correct, but answer is incorrect due to algebraic or other math error
- 60% of maximum score if approach is mostly correct, but there is some conceptual error
- 40% of maximum score if problem has been seriously attempted, but approach is incorrect and/or there are major conceptual errors.
- 20% of maximum score if problem has been attempted, but is illegible.
- 0% of maximum score if there is no attempt to solve the problem.

Problem 6.1: [Problem 12.28 from Nilsson and Riedel] (8 $\frac{1}{3}$ points)

The switch in the circuit shown to the right has been in position A for a long time. At time $t=0$, the switch moves instantaneously to position B.
(a) Derive the differential equation that governs the behavior of the inductor current $i_{\mathrm{L}}(t)$ for $t \geq 0^{+}$.

(b) Determine the value of the inductor current at $t=0^{-}$, i.e., $i_{\mathrm{L}}\left(0^{-}\right)$, and the value of the time derivative of the inductor current at $t=0^{-}$, i.e., $i_{\mathrm{L}}^{\prime}\left(0^{-}\right)$.
(c) Using s-domain analysis (i.e., Laplace Transforms), show that:

$$
\mathrm{I}_{\mathrm{L}}(s)=\frac{\mathrm{I}_{\mathrm{DC}}\left(s+\frac{1}{\mathrm{RC}}\right)}{s^{2}+\frac{s}{\mathrm{RC}}+\frac{1}{\mathrm{LC}}}
$$

Problem 6.2: [Problem 12.40(a) from Nilsson and Riedel] ($8 \frac{1}{3}$ points)

Determine the time-domain function $f(t)$ associated with the following s-domain function:

$$
\mathrm{F}(s)=\frac{6(s+10)}{(s+5)(s+8)}
$$

Hint: Use partial fraction expansion and a table of Laplace Transform pairs.

Problem 6.3: [Problem 12.41(b) from Nilsson and Riedel] ($8 \frac{1}{3}$ points)

Determine the time-domain function $f(t)$ associated with the following s-domain function:

$$
\mathrm{F}(\mathrm{~s})=\frac{-\mathrm{s}^{2}+52 \mathrm{~s}+445}{s\left(\mathrm{~s}^{2}+10 \mathrm{~s}+89\right)}
$$

Problem 6.4: ($8 \frac{1}{3}$ points)

In the network to the right, the voltage source delivers an impulse of area $\mathrm{Q}_{0} \mathrm{R}$ volt-seconds at time $t=0$. Using s domain analysis, determine an expression for the capacitor voltage $v_{\mathrm{C}}(t)$ for $t>0$.

Problem 6.5: ($8 \frac{1}{3}$ points)

In the circuit to the right, the current source delivers an impulse of area Q_{0} coulombs at time $t=0$, and the voltage source delivers an impulse of area Λ_{0} volt-seconds at time $t=0$. Using superposition in the s-domain,
 determine an expression for the capacitor voltage $v_{\mathrm{C}}(t)$ for $t>0$.

Problem 6.6: [Problem 13.7 from Nilsson and Riedel] ($8 \frac{1}{3}$ points)

Consider the circuit shown on the right.
(a) Determine the impedance $\mathrm{Z}_{\mathrm{ab}}(s)$ seen looking into the terminals a, b of the circuit.
(b) Determine the values of the poles and zeros of $\mathrm{Z}_{\mathrm{ab}}(s)$.

Problem 6.7: [Problem 13.17 from Nilsson and Riedel] ($8 \frac{1}{3}$ points)

Consider the circuit shown on the right.
(a) Using s-domain analysis, determine the expression for $V_{0}(s)$.
(b) Use the s-domain expression derived in (a) to predict the initial- and final-values of
 $v_{0}(t)$.
(c) Determine the time-domain expression for $v_{0}(t)$.

Problem 6.8: [Problem 13.54 from Nilsson and Riedel] ($8 \frac{1}{3}$ points)

The op-amp in the circuit to the right is ideal.
(a) Determine an expression for the transfer function $\mathrm{H}(s)=$ $\mathrm{V}_{\mathrm{O}}(s) / \mathrm{V}_{\mathrm{I}}(s)$ in terms of $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}$ and s.
(b) Determine the numerical values of the poles and zeros of $\mathrm{H}(\mathrm{s})$.
(c) Sketch the magnitude Bode plot of this circuit's transfer function $\mathrm{H}(j \omega)$, and identify whether it is a low-pass, band-pass, or high-pass filter.

Problem 6.9: ($8 \frac{1}{3}$ points)

For the circuit shown on the right, determine an expression for the impedance $\mathrm{Z}_{\mathrm{ab}}(s)$ seen looking into its terminals a, b in terms of $\mathrm{R}_{\mathrm{s}}, \mathrm{R}_{\mathrm{p}}, \mathrm{L}, \mathrm{C}$ and s.

Problem 6.10: [Problem 13.52 from Nilsson and Riedel] ($8 \frac{1}{3}$ points)

Consider the circuit shown to the right.

(a) Determine an expression for its transfer function $\mathrm{H}(s)=$ $\mathrm{V}_{\mathrm{O}}(s) / \mathrm{V}_{\mathrm{I}}(s)$ in terms of R, C and s.
(b) Determine the numerical values of the poles and zeros of $\mathrm{H}(s)$, and show these on the complex s-plane.
(c) Sketch the magnitude and phase Bode plot of this circuit's transfer function $\mathrm{H}(j \omega)$.

Problem 6.11: ($8 \frac{1}{3}$ points)

Consider the circuit shown to the right.
(a) Determine an expression for its transfer function $\mathrm{H}(s)=v_{\mathrm{I}}(t)$ $\mathrm{V}_{\mathrm{O}}(s) / \mathrm{V}_{\mathrm{I}}(s)$ in terms of R, L, C and s.

(b) Determine the numerical values of the poles and zeros of $\mathrm{H}(s)$, and show these on the complex s-plane.
(c) Sketch the magnitude and phase Bode plot of this circuit's transfer function $\mathrm{H}(j \omega)$.

Problem 6.12: [Problem 9.6 from Nilsson and Riedel] ($8 \frac{1}{3}$ points)

The root-mean-square (rms) value of the sinusoidal voltage supplied to the convenience outlet of a home in Scotland is 240 V . What is the maximum value of the voltage at the outlet?

