Helpful readings for this homework: Nilsson and Riedel, Chapter 9 and Chapter 14.

Grading Criteria

Show all work, as each problem will be graded using the grading criteria given below:

- 100% of maximum score if approach is correct and answer is also correct
- 80% of maximum score if approach is correct, but answer is incorrect due to algebraic or other math error
- 60% of maximum score if approach is mostly correct, but there is some conceptual error
- 40% of maximum score if problem has been seriously attempted, but approach is incorrect and/or there are major conceptual errors.
- 20% of maximum score if problem has been attempted, but is illegible.
- 0% of maximum score if there is no attempt to solve the problem.

Problem 5.1: [Problem 9.3 from Nilsson and Riedel] ($8\frac{1}{3}$ points)

Consider the sinusoidal voltage $v(t) = 25 \cos(400\pi t + 60^\circ)$ V.

- (a) What is the maximum amplitude of the voltage?
- (b) What is the frequency in hertz?
- (c) What is the frequency in radians per second?
- (d) What is the phase angle in radians?
- (e) What is the phase angle in degrees?
- (f) What is the period in milliseconds?
- (g) What is the first time after t = 0 that v = 0 V?
- (h) The sinusoidal function is shifted 5/6 ms to the right along the time axis. What is the expression for v(t)?
- (i) What is the minimum number of milliseconds that the function must be shifted to the left if the expression for v(t) is $25 \sin(400\pi t)$ V?

Problem 5.2: [Problem 9.11 from Nilsson and Riedel] ($8\frac{1}{3}$ points)

Use the concept of the phasor to combine the following sinusoidal function into a single trigonometric expression:

 $y = 30\cos(200t - 160^\circ) + 15\cos(200t + 70^\circ)$

Problem 5.3: [Problem 9.14 from Nilsson and Riedel] ($8\frac{1}{3}$ points)

The expressions for the steady-state voltage and current at the terminals of the circuit shown to the right are:

$$v_g = 300 \cos(5000\pi t - 78^\circ) \,\mathrm{V}$$

 $i_g = 6\sin(5000\pi t + 123^\circ)$ A

- (a) What is the impedance seen by the voltage source?
- (b) By how many microseconds is the current out of phase with the voltage?

Problem 5.4: [Problem 9.18 from Nilsson and Riedel] ($8\frac{1}{3}$ points)

Consider the two circuits shown to the right.

(a) Show that, at a given frequency ω , the circuits above will have the same impedance between the terminals a, b if:

$$R_{1} = \frac{\omega^{2}L_{2}^{2}R_{2}}{R_{2}^{2} + \omega^{2}L_{2}^{2}}$$
$$L_{1} = \frac{R_{2}^{2}L_{2}}{R_{2}^{2} + \omega^{2}L_{2}^{2}}$$

(b) Find the values of resistance and inductance that when connected in series will have the same impedance at 4 krad/s as that of a 5 kΩ resistor connected in parallel with a 1.25 H inductor.

Problem 5.5: [Problem 9.24 from Nilsson and Riedel] ($8\frac{1}{3}$ points)

Consider the RLC circuit shown to the right.

- (a) Find the frequency (in radians per second) at which the impedance Z_{ab} of this circuit is purely resistive.
- (b) Find the value of Z_{ab} at the frequency determined in part (a).

Problem 5.7: [Problem 9.47 from Nilsson and Riedel] ($8\frac{1}{3}$ points)

The device shown to the right is represented in the frequency domain by a Thevenin equivalent. When a resistor having an impedance of 200 Ω is connected across the device, the value of \hat{I}_0 is (-150 + j150) mA. When an inductor having an impedance of $j200 \Omega$ is connected across the device, the value of \hat{V}_0 is (-40 - j40) V.

Find the Thevenin voltage \widehat{V}_{TH} and the Thevenin impedance Z_{TH} of this device.

Device

Problem 5.8: [Problem 9.55 from Nilsson and Riedel] ($8\frac{1}{2}$ points)

Use superposition to find the phasor voltage \hat{V}_g in the circuit shown to the right.

Problem 5.9: [Problem 9.41 from Nilsson and Riedel] (8 $\frac{1}{2}$ points)

The circuit shown to the right is operating in the sinusoidal steady state. The capacitor is adjusted until the current i_g is in phase with the sinusoidal voltage v_g .

- (a) Specify the value of capacitance C in microfarads if $v_g = 80 \cos(5000t)$ V.
- (b) Give the steady-state expression for i_q when C has the value found in part (a).

Problem 5.10: $(8\frac{1}{3} \text{ points})$

The circuit shown below models an oscilloscope probe that provides a 10:1 voltage attenuation. Resistor R_1 is a fixed resistor in the probe, resistor R_2 models the input resistance of the oscilloscope, capacitor C_1 is a variable capacitor in the probe, and capacitor C_2 models the combined input capacitance of the oscilloscope and the cable between the probe and the oscilloscope.

Determine the two relationships that are required between R_1 , R_2 , C_1 and C_2 so that $v_{out}(t) = 0.1v_{in}(t)$ for all values of radial frequency ω . That is, what relations are required so that $\hat{V}_{out} = 0.1\hat{V}_{in}$ (i.e., $V_{out} = 0.1V_{in}$ and $\phi = 0$) for all values of ω ?

(Note that the value of C_2 is difficult to guarantee in practice due to variations in cable length and oscilloscope input capacitance, which is why C_1 is a variable capacitor and made manually adjustable in the probe.)

Problem 5.11: ($8\frac{1}{3}$ points)

Determine the impedance (Z) of the circuits shown below. Also using straight lines (asymptotes), sketch the magnitude of the impedance versus angular frequency (ω) on a log-log scale, and sketch the phase of the impedance versus angular frequency (ω) on a semi-log scale. In each case clearly indicate any corner frequencies (i.e., where the asymptotes in the magnitude plot meet).

Problem 5.12: $(8\frac{1}{3} \text{ points})$

Consider the RLC filter shown to the right.

- (a) Derive an expression for the transfer function of this circuit \hat{V}_0/\hat{V}_1 , in terms of R, L, C, and ω .
- (b) Given that $R = 10 \Omega$, $L = 100 \mu$ H, and C = 100 pF, using a chart similar to the one provided here, sketch the magnitude of the transfer function $|\hat{V}_O/\hat{V}_I|$ across the full range of frequencies shown. Make sure to provide asymptotes for low-frequency and high-frequency behavior and the value of the magnitude of the transfer function at any resonance or corner frequency that might exist.

