Helpful readings for this homework: Nilsson and Riedel, Chapter 7 and Chapter 8.

Grading Criteria

Show all work, as each problem will be graded using the grading criteria given below:

- 100% of maximum score if approach is correct and answer is also correct
- 80% of maximum score if approach is correct, but answer is incorrect due to algebraic or other math error
- 60% of maximum score if approach is mostly correct, but there is some conceptual error
- 40% of maximum score if problem has been seriously attempted, but approach is incorrect and/or there are major conceptual errors.
- 20% of maximum score if problem has been attempted, but is illegible.
- 0% of maximum score if there is no attempt to solve the problem.

Problem 4.1: ($8 \frac{1}{3}$ points)

In the network to the right, the voltage source delivers an impulse of area $\mathrm{Q}_{0} \mathrm{R}$ volt-seconds at time $t=0$. Determine an expression for the capacitor voltage for $t>0$. Hint: Converting the source and the resistor into a Norton equivalent may make the solution more intuitive.

Problem 4.2: ($8 \frac{1}{3}$ points)
This problem examines the relationship between the responses to different inputs in a linear circuit. The circuit shown below is driven first by a voltage step $\left(v_{\text {IN }}(t)=v_{\text {STEP }}(t)\right)$ and then by a voltage $\operatorname{ramp}\left(v_{\text {IN }}(t)=v_{\text {RAMP }}(t)\right)$. In both cases the initial voltage across the capacitor at time $t=0$ is zero.

(a) For the above circuit, determine the differential equation that describes the time evolution of the capacitor voltage $v_{\mathrm{C}}(t)$.
(b) By solving the differential equation, find the capacitor voltage $v_{\mathrm{C}}(t)$ for $t \geq 0$ in response to the voltage step $v_{\text {STEP }}(t)$ shown above.
(c) By solving the differential equation, find the capacitor voltage $v_{\mathrm{C}}(t)$ for $t \geq 0$ in response to the voltage ramp $v_{\text {RAMP }}(t)$ shown above.
(d) The step input can be constructed from the ramp input according to $v_{\text {STEP }}(t)=\frac{1}{\alpha} \frac{d}{d t} v_{\text {RAMP }}(t)$. Show that their respective responses are related in a similar manner.

Problem 4.3: [Problem 7.81 from Nilsson and Riedel] ($8 \frac{1}{3}$ points)

The current source in the circuit to the right generates the current pulse shown next to it. There is no energy stored in the inductor at
 time $t=0$.
(a) Derive the numerical expressions for $v_{0}(t)$ for the time intervals: $t<0,0 \leq t \leq 25 \mu \mathrm{~s}$, and $25 \mu \mathrm{~s} \leq t \leq \infty$.
(b) Calculate $v_{0}\left(25^{-} \mu \mathrm{s}\right)$ and $v_{0}\left(25^{+} \mu \mathrm{s}\right)$.
(c) Calculate $i_{0}\left(25^{-} \mu \mathrm{s}\right)$ and $i_{0}\left(25^{+} \mu \mathrm{s}\right)$.

Problem 4.4: ($8 \frac{1}{3}$ points)

In the circuit to the right, the inductor current just before the switch opens (at time $t=0$) is $i_{\mathrm{L}}\left(0^{-}\right)=$ 2 A.

Determine the expression for $i_{\mathrm{L}}(t)$ for $t \geq 0$.

Problem 4.5: ($8 \frac{1}{3}$ points)
In the circuit to the right, the voltage source delivers an impulse of area Λ_{0} volt-seconds at time $t=t_{0}$.
(a) Determine the inductor current at time $t=t_{0}^{+}$, i.e., $i_{\mathrm{L}}\left(t_{0}^{+}\right)$.

(b) Determine an expression for the inductor current $i_{\mathrm{L}}(t)$ for $t>t_{0}$.

Problem 4.6: ($8 \frac{1}{3}$ points)

After the circuit shown to the right has been in operation for a longtime, a screwdriver is inadvertently connected across the terminals a, b at time $t=0$. Assume the resistance of the screwdriver is negligible.

(a) Determine the current that flows through the screwdriver at $t=0^{+}$and at $t=\infty$.
(b) Derive the expression for the current through the screwdriver for $t>0$.

Problem 4.7: ($8 \frac{1}{3}$ points)

In the circuit to the right, the current source delivers an impulse of area Q_{0} coulombs at time $t=0$, and the voltage source delivers an impulse of area Λ_{0}
 volt-seconds at time $t=0$.
(a) Determine the capacitor voltage and the inductor current at time $t=0^{+}$, i.e., $v_{\mathrm{C}}\left(0^{+}\right)$and $i_{\mathrm{L}}\left(0^{+}\right)$.
(b) Determine an expression for the capacitor voltage $v_{\mathrm{C}}(t)$ for $t>0$.

Problem 4.8: ($8 \frac{1}{3}$ points)

The network to the right includes a switch with three positions: A, B, and C . Prior to $t=0$, the switch is in position B and both the inductor current, $i_{\mathrm{L}}(t)$, and the capacitor voltage, $v_{\mathrm{C}}(t)$, are zero. The voltage source, V , is constant.
(a) At time $t=0$, the switch moves to position A and remains
 there until $t=\mathrm{T}_{1}$ seconds. Determine $i_{\mathrm{L}}(t)$ and $v_{\mathrm{C}}(t)$ for $0 \leq t \leq \mathrm{T}_{1}$.
(b) At time $t=\mathrm{T}_{1}$, the switch moves to position C without interrupting the current $i_{\mathrm{L}}(t)$. It remains there until $i_{\mathrm{L}}(t)$ goes to zero for the first time, at which time $t=\mathrm{T}_{2}$ seconds the switch moves back to position B. Determine $i_{\mathrm{L}}(t)$ and $v_{\mathrm{C}}(t)$ for $\mathrm{T}_{1} \leq t \leq \mathrm{T}_{2}$. Also determine T_{2}.
(c) The switch remains in position B until time $t=\mathrm{T}_{3}$ seconds. Find $i_{\mathrm{L}}(t)$ and $v_{\mathrm{C}}(t)$ for $\mathrm{T}_{2} \leq t \leq$ T_{3}.
(d) Determine the energy stored in the inductor at time $t=\mathrm{T}_{1}$.
(e) The energy stored in the inductor at time $t=\mathrm{T}_{1}$ is fully transferred to the capacitor at time $t=$ T_{2}. Use this fact (and physical intuition regarding the polarity of v_{C}) to determine $v_{\mathrm{C}}\left(t=\mathrm{T}_{2}\right)$ from your answer in part (d). This should match your answer in part (b) when $v_{\mathrm{C}}(t)$ is evaluated at $t=\mathrm{T}_{2}$.

Problem 4.9: ($8 \frac{1}{3}$ points)
An $n^{\text {th }}$-order physical system has n independent energy storage elements. A swinging pendulum, for example, contains both kinetic and potential energy; an L-C circuit contains both electric and
 magnetic energy. These examples are second-order systems. A second-order system often (but not always) exhibits oscillatory behavior. In a circuit, the energy storage elements are independent if they do not share a voltage or a current. An example of such a circuit is shown above.
(a) Derive the differential equation for $v_{\mathrm{C} 1}$.
(b) If $\mathrm{R}_{1}=\mathrm{R}_{2}=10 \mathrm{k} \Omega$ and $\mathrm{C}_{1}=\mathrm{C}_{2}=100 \mu \mathrm{~F}$, what are the natural frequencies and/or time constants of this circuit?
(c) If $v_{\mathrm{C} 1}\left(t=0^{+}\right)=v_{\mathrm{C} 2}\left(t=0^{+}\right)=0$, determine $v_{\mathrm{C} 1}(t)$ for time $t>0$.

Problem 4.10: [Problem 8.31 from Nilsson and Riedel] ($8 \frac{1}{3}$ points)

The switch in the circuit below has been open for a long time before closing at $t=0$. Determine $i_{0}(t)$ for $t \geq 0$.

Problem 4.11: ($8 \frac{1}{3}$ points)

Consider the second-order circuit shown below in which the switch is closed at time $t=0$. Determine the differential equation that describes the time evolution of the capacitor voltage $v_{\mathrm{C}}(t)$ for time $t>0$.

Problem 4.12: [Problem 8.53 from Nilsson and Riedel] ($8 \frac{1}{3}$ points)
The circuit shown below has been in operation for a long time. At $t=0$, the source voltage suddenly drops to 150 V . Find $v_{\mathrm{O}}(t)$ for time $t \geq 0$.

