Helpful readings for this homework: Nilsson and Riedel, Chapter 7 and Chapter 8.

Grading Criteria

Show all work, as each problem will be graded using the grading criteria given below:

- 100% of maximum score if approach is correct and answer is also correct
- 80% of maximum score if approach is correct, but answer is incorrect due to algebraic or other math error
- 60% of maximum score if approach is mostly correct, but there is some conceptual error
- 40% of maximum score if problem has been seriously attempted, but approach is incorrect and/or there are major conceptual errors.
- 20% of maximum score if problem has been attempted, but is illegible.
- 0% of maximum score if there is no attempt to solve the problem.

Problem 4.1: $(8\frac{1}{3} \text{ points})$

In the network to the right, the voltage source delivers an impulse of area Q_0R volt-seconds at time t = 0. Determine an expression for the capacitor voltage for t > 0. *Hint: Converting the source and the resistor into a Norton equivalent may make the solution more intuitive.*

Problem 4.2: $(8\frac{1}{3} \text{ points})$

This problem examines the relationship between the responses to different inputs in a linear circuit. The circuit shown below is driven first by a voltage step $(v_{IN}(t) = v_{STEP}(t))$ and then by a voltage ramp $(v_{IN}(t) = v_{RAMP}(t))$. In both cases the initial voltage across the capacitor at time t = 0 is zero.

- (a) For the above circuit, determine the differential equation that describes the time evolution of the capacitor voltage $v_{\rm C}(t)$.
- (b) By solving the differential equation, find the capacitor voltage $v_{\rm C}(t)$ for $t \ge 0$ in response to the voltage step $v_{\rm STEP}(t)$ shown above.
- (c) By solving the differential equation, find the capacitor voltage $v_{\rm C}(t)$ for $t \ge 0$ in response to the voltage ramp $v_{\rm RAMP}(t)$ shown above.
- (d) The step input can be constructed from the ramp input according to $v_{\text{STEP}}(t) = \frac{1}{\alpha} \frac{d}{dt} v_{\text{RAMP}}(t)$. Show that their respective responses are related in a similar manner.

Problem 4.3: [Problem 7.81 from Nilsson and Riedel] ($8\frac{1}{3}$ points)

(a) Derive the numerical expressions for $v_0(t)$ for the time intervals: $t < 0, 0 \le t \le 25 \mu s$, and $25 \mu s \le t \le \infty$.

 $\Lambda_0 \delta(t-t_0)$

- (b) Calculate $v_0(25^- \mu s)$ and $v_0(25^+ \mu s)$.
- (c) Calculate $i_0(25^- \mu s)$ and $i_0(25^+ \mu s)$.

Problem 4.4: $(8\frac{1}{3} \text{ points})$

In the circuit to the right, the inductor current just before the switch opens (at time t = 0) is $i_L(0^-) = 2$ A.

Determine the expression for $i_{\rm L}(t)$ for $t \ge 0$.

Problem 4.5: $(8\frac{1}{3} \text{ points})$

In the circuit to the right, the voltage source delivers an impulse of area Λ_0 volt-seconds at time $t = t_0$.

- (a) Determine the inductor current at time $t = t_0^+$, i.e., $i_L(t_0^+)$.
- (b) Determine an expression for the inductor current $i_{\rm L}(t)$ for $t > t_0$.

Problem 4.6: $(8\frac{1}{3} \text{ points})$

After the circuit shown to the right has been in operation for a longtime, a screwdriver is inadvertently connected across the terminals a,b at time t = 0. Assume the resistance of the screwdriver is negligible.

- 5 A $5 A = 30 \Omega$ $b = 1 \mu F$ $b = 0.5 \Omega$
- (a) Determine the current that flows
 - through the screwdriver at $t = 0^+$ and at $t = \infty$.
- (b) Derive the expression for the current through the screwdriver for t > 0.

 R_1

 $i_{\rm L}(t)$

 R_2

ίL

Problem 4.7: $(8\frac{1}{3} \text{ points})$

In the circuit to the right, the current source delivers an impulse of area Q_0 coulombs at time t = 0, and the voltage source delivers an impulse of area Λ_0 volt-seconds at time t = 0.

- $Q_0 \delta(t) \begin{pmatrix} & & & \\ & &$
- (a) Determine the capacitor voltage and the inductor current at time $t = 0^+$, i.e., $v_{\rm C}(0^+)$ and $i_{\rm L}(0^+)$.
- (b) Determine an expression for the capacitor voltage $v_{\rm C}(t)$ for t > 0.

Problem 4.8: $(8\frac{1}{3} \text{ points})$

The network to the right includes a switch with three positions: A, B, and C. Prior to t = 0, the switch is in position B and both the inductor current, $i_{\rm L}(t)$, and the capacitor voltage, $v_{\rm C}(t)$, are zero. The voltage source, V, is constant.

- (a) At time t = 0, the switch moves to position A and remains there until $t = T_1$ seconds. Determine $i_L(t)$ and $v_C(t)$ for $0 \le t \le T_1$.
- (b) At time $t = T_1$, the switch moves to position C without interrupting the current $i_L(t)$. It remains there until $i_L(t)$ goes to zero for the first time, at which time $t = T_2$ seconds the switch moves back to position B. Determine $i_L(t)$ and $v_C(t)$ for $T_1 \le t \le T_2$. Also determine T_2 .
- (c) The switch remains in position B until time $t = T_3$ seconds. Find $i_L(t)$ and $v_C(t)$ for $T_2 \le t \le T_3$.
- (d) Determine the energy stored in the inductor at time $t = T_1$.
- (e) The energy stored in the inductor at time $t = T_1$ is fully transferred to the capacitor at time $t = T_2$. Use this fact (and physical intuition regarding the polarity of v_c) to determine $v_c(t = T_2)$ from your answer in part (d). This should match your answer in part (b) when $v_c(t)$ is evaluated at $t = T_2$.

Problem 4.9: $(8\frac{1}{2} \text{ points})$

An n^{th} -order physical system has n independent energy storage elements. A swinging pendulum, for example, contains both kinetic and potential energy; an L-C circuit contains both electric and

magnetic energy. These examples are second-order systems. A second-order system often (but not always) exhibits oscillatory behavior. In a circuit, the energy storage elements are independent if they do not share a voltage or a current. An example of such a circuit is shown above.

- (a) Derive the differential equation for v_{C1} .
- (b) If $R_1 = R_2 = 10 \text{ k}\Omega$ and $C_1 = C_2 = 100 \mu\text{F}$, what are the natural frequencies and/or time constants of this circuit?
- (c) If $v_{C1}(t = 0^+) = v_{C2}(t = 0^+) = 0$, determine $v_{C1}(t)$ for time t > 0.

Problem 4.10: [Problem 8.31 from Nilsson and Riedel] (8 $\frac{1}{3}$ points)

The switch in the circuit below has been open for a long time before closing at t = 0. Determine $i_0(t)$ for $t \ge 0$.

Problem 4.11: $(8\frac{1}{3} \text{ points})$

Consider the second-order circuit shown below in which the switch is closed at time t = 0. Determine the differential equation that describes the time evolution of the capacitor voltage $v_{\rm C}(t)$ for time t > 0.

Problem 4.12: [Problem 8.53 from Nilsson and Riedel] ($8\frac{1}{3}$ points)

The circuit shown below has been in operation for a long time. At t = 0, the source voltage suddenly drops to 150 V. Find $v_0(t)$ for time $t \ge 0$.

