
Lecture 28:

Fall 2016

1

More Advanced Topics
Case Study

ECE 2300
Digital Logic & Computer Organization



Lecture 28:

Parallelism: Making our Processor Fast
• Processor architects improve performance 

through hardware that exploits the different types 
of parallelism within computer programs

• Instruction-Level Parallelism (ILP)
– Parallelism within a sequential program

• Thread-level parallelism (TLP)
– Parallelism among different threads

• Data-level parallelism (DLP)
– Parallelism among the data within a sequential 

program 

3



Lecture 28:

Multiprocessing and Multicore
• Multiprocessor: Computer system with >1 CPU

– Computer with 1 CPU is called a uniprocessor

• Multicore: Multiprocessor on a single chip

4



Lecture 28:

Multiprocessor Advantages
• Performance improvement by splitting task 

among multiple CPUs (thread-level parallelism)
– Scientific programs, databases, media processing, 

web browsers, games, etc

• Tolerance to failures
– If one CPU fails, the system is still usable

• Power efficiency
– Several modestly superscalar CPUs can be more 

power efficient than 1 wide CPU
– Major reason for the move to multicore chips

5



Lecture 28:

Multiprocessor Challenges
• Parallel programming is difficult and error prone

• Some programs are not easy to parallelize

• The serial part of a parallel program limits the 
performance improvement (Amdahl’s Law)

• Performance cost of communication and 
coordination among  threads

6



Lecture 28:

Shared Memory Multiprocessor

• All CPUs share same memory and I/O devices

• CPUs share data by writing/reading memory

• Widely used in multicore chips
7



Lecture 28: 8

Memory DIMMs

Typical Multicore Chip Organization

L2 Cache

L1
Data
Cache

L1
Instr
Cache

CPU1
Pipeline

L2 Cache

L1
Data
Cache

L1
Instr
Cache

CPU2
Pipeline

L2 Cache

L1
Data
Cache

L1
Instr
Cache

CPUn
Pipeline

Shared Interconnect

Memory Controller I/O Controller

I/O Buses

. . .

. . .



Lecture 28:

Cache Coherence Problem
• Multiple copies of same data may exist in 

different CPU caches and in memory

• Write by one CPU to its cache makes other 
copies “stale” (out of date)
– The caches are no longer “coherent”

• Example
– CPU 1 reads block A from memory into cache
– CPU 2 reads block A from memory into cache
– CPU 1 writes to block A in its cache
– CPU 2 and memory now hold stale copies of block A

9



Lecture 28:

Cache Coherence Solution
• Each block in cache has state bits that indicate 

the ownership of the block

• Before writing to a block, cache controller 
invalidates (gets rid of) other cache copies to 
obtain an exclusively owned copy

• All caches snoop (monitor) the shared 
interconnect to determine when they should
– Invalidate their copy of a block when another cache 

asks for exclusive ownership 
– Provide their copy of a block (instead of memory) to a 

requester
10



Lecture 28:

MESI Cache Coherence Solution
• Each block in the cache is in one of 4 states

– Invalid: Block is not valid.
– Shared: Another cache may have the block.  Copy in 

memory is the same as in cache.
– Exclusive: No other cache has the block.  Copy in 

memory is the same as in cache.
– Modified: No other cache has the block.  Copy in 

memory is stale (out of date).

• A cache obtains an exclusive copy of a block 
before writing to it

• A cache with a modified copy of a block 
provides it upon request (instead of memory)

11



Lecture 28:

MESI Cache Coherence Example
• Previous problem

– CPU 1 reads block A from memory into cache
– CPU 2 reads block A from memory into cache
– CPU 1 writes to block A in its cache
– CPU 2 and memory now hold stale copies of block A 

• MESI solution
– Before CPU 1 does its write, it first broadcasts an 

invalidate A message on the shared interconnect
– CPU 2 marks its block A as invalid
– CPU 1 does its write and marks its block A modified
– CPU 2 will now miss when it wants to read A again
– CPU 1 provides its copy of A instead of memory

12




