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Parallelism: Making our Processor Fast
• Processor architects improve performance 

through hardware that exploits the different types 
of parallelism within computer programs

• Instruction-Level Parallelism (ILP)
– Parallelism within a sequential program

• Thread-level parallelism (TLP)
– Parallelism among different threads

• Data-level parallelism (DLP)
– Parallelism among the data within a sequential 

program 
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Multiprocessing and Multicore
• Multiprocessor: Computer system with >1 CPU

– Computer with 1 CPU is called a uniprocessor

• Multicore: Multiprocessor on a single chip
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Multiprocessor Advantages
• Performance improvement by splitting task 

among multiple CPUs (thread-level parallelism)
– Scientific programs, databases, media processing, 

web browsers, games, etc

• Tolerance to failures
– If one CPU fails, the system is still usable

• Power efficiency
– Several modestly superscalar CPUs can be more 

power efficient than 1 wide CPU
– Major reason for the move to multicore chips
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Multiprocessor Challenges
• Parallel programming is difficult and error prone

• Some programs are not easy to parallelize

• The serial part of a parallel program limits the 
performance improvement (Amdahl’s Law)

• Performance cost of communication and 
coordination among  threads

6



Lecture 28:

Shared Memory Multiprocessor

• All CPUs share same memory and I/O devices

• CPUs share data by writing/reading memory

• Widely used in multicore chips
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Memory DIMMs
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Cache Coherence Problem
• Multiple copies of same data may exist in 

different CPU caches and in memory

• Write by one CPU to its cache makes other 
copies “stale” (out of date)
– The caches are no longer “coherent”

• Example
– CPU 1 reads block A from memory into cache
– CPU 2 reads block A from memory into cache
– CPU 1 writes to block A in its cache
– CPU 2 and memory now hold stale copies of block A
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Cache Coherence Solution
• Each block in cache has state bits that indicate 

the ownership of the block

• Before writing to a block, cache controller 
invalidates (gets rid of) other cache copies to 
obtain an exclusively owned copy

• All caches snoop (monitor) the shared 
interconnect to determine when they should
– Invalidate their copy of a block when another cache 

asks for exclusive ownership 
– Provide their copy of a block (instead of memory) to a 

requester
10



Lecture 28:

MESI Cache Coherence Solution
• Each block in the cache is in one of 4 states

– Invalid: Block is not valid.
– Shared: Another cache may have the block.  Copy in 

memory is the same as in cache.
– Exclusive: No other cache has the block.  Copy in 

memory is the same as in cache.
– Modified: No other cache has the block.  Copy in 

memory is stale (out of date).

• A cache obtains an exclusive copy of a block 
before writing to it

• A cache with a modified copy of a block 
provides it upon request (instead of memory)
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MESI Cache Coherence Example
• Previous problem

– CPU 1 reads block A from memory into cache
– CPU 2 reads block A from memory into cache
– CPU 1 writes to block A in its cache
– CPU 2 and memory now hold stale copies of block A 

• MESI solution
– Before CPU 1 does its write, it first broadcasts an 

invalidate A message on the shared interconnect
– CPU 2 marks its block A as invalid
– CPU 1 does its write and marks its block A modified
– CPU 2 will now miss when it wants to read A again
– CPU 1 provides its copy of A instead of memory
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