ECE 2300 Digital Logic & Computer Organization Fall 2016

More Memories Single Cycle Microprocessor

Cornell University

Types of Memories

- Random Access Memory (RAM)
 - Read and write any location at similar speeds
 - Volatile: loses contents when powered off
 - SRAM, DRAM
- Read-Only Memory (ROM)
 - Truly read-only
 - Written in the factory, and never written after installation
 - Mostly read and rarely written
 - Much faster to read than write
 - Non-volatile
 - ROM, PROM, EPROM, EEPROM, Flash memory

Dynamic RAM (DRAM)

- SRAM advantages and disadvantages
 - Very fast (+)
 - High power (–)
 - Relatively high area/bit (–)

• DRAM

- Single transistor storage cell
- Higher density → lower cost/bit
- Lower power/bit

DRAM Bit Structure

- Capacitor accessed through a transistor
- Capacitor is charged through the bit line to store a 1
- Capacitor is discharged through the bit line to store a 0

DRAM Read

- Bit line precharged
 halfway between 0 and 1
- Word line is asserted
- Capacitor voltage pulls the bit line slightly higher or lower
- Sense amplifier detects this small change (1 or 0)

DRAM Organization (64K x 1)

Multiplexed 256 x 256 row address inputs decoder array Row-address strobe (RAS) row address . column address - Selects row of A0-A7 array RAS L control column latches, CAS L multiplexer, and demultiplexer WE L Columnlatch, mux, and address strobe demux control (CAS) - Selects subset DOUT DIN of the row Lecture 15: 9

DRAM Refresh

- Capacitors discharge over time
- Periodic refresh cycles recharge each memory bit
- Each row periodically accessed using RAS, which restores the charge

Synchronous DRAM (SDRAM)

- D FFs on input and output signals
- Can "pipeline" multiple read and write operations
- Multiple banks can be accessed concurrently
- DDR: data transferred on both rising and falling clock edges

Read-Only Memory (ROM)

• Truly read-only

- Written in the factory, and never written after installation
- Mostly read and rarely written
 - Faster to read than write
- Non-volatile
- ROM, PROM, EPROM, EEPROM, Flash memory

Applications of ROM

- Program storage
 - Boot code for personal computers
 - Complete application storage for embedded systems
- Data storage
 - Configuration information, music players, SSDs
- Combinational logic functions
 - Lookup table
 - Address inputs = function inputs
 - Data outputs = function outputs

Using ROMs for Combinational Logic

• Can implement sum-of-products using a ROM

Multiplier Using ROM

9x8 = 72 = 0x48

10: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E OF 20: 00 02 04 06 08 0A OC OE 10 12 14 16 18 1A 1C 1E 30: 00 03 06 09 0C 0F 12 15 18 1B 1E 21 24 27 2A 2D 40: 00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C 50: 00 05 0A OF 14 19 1E 23 28 2D 32 37 3C 41 46 4B 00 06 0C 12 18 1E 24 2A 30 36 3C 42 48 60: 54 5A 4E70: 00 07 0E 15 1C 23 2A 31 38 3X 46 4D 54 5B 62 69 80: 00 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78 90: 00 09 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 A0: 00 OA 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 B0: 00 OB 16 21 2C37 42 4D 58 63 6E 79 84 8F9A A5 C0: 00 OC 18 24 30 3C 48 54 60 6C 78 84 909CΑ8 B4 00 OD 1A 68 8F90 D0: 27 34 41 4E5B 75 82 A9 B6 C3 7E 8C 9A A8 B6 C4 D2 E0: 00 OE 1C 2A 38 46 54 62 70 F0: 00 OF 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

This Concludes Part 1

- Boolean algebra
- Combinational logic and minimization
- Logic functions
- CMOS gates
- Binary arithmetic and ALUs
- Latches and flip-flops
- Counters and shift registers
- Verilog
- Finite state machines
- Hazards, timing, clocking
- Memories

Part 2 Overview

- Single cycle microprocessor
- Instruction set architecture
- Pipelined microprocessor
- Caches and main memory
- Virtual memory
- Input/output
- Exceptions
- Case study

Organization of a Computer

The Basic Processing Cycle

- Read data from two registers
- Perform an operation
- Place the result into a register
- All three steps performed in 1 clock cycle

Register File

- Collection of 2^k n-bit loadable registers
- Control inputs
 - SA Source address A
 - **SB Source address B**
 - **DR Destination address**
 - LD Load destination register with D_in
- Data inputs
 - D_in Input data
- Data outputs

DataA – Output data A DataB – Output data B

Example with 4 registers. Typically have 32 or more.

Instruction Execution

Instruction Execution

Instruction Execution

Operations With Constants

- Constants are called *immediate values*
- Sign extend (SE) IMM to the width of DataA to perform correct two's complement operation
 - Why? May not have enough bits in instruction (later)
 - Assume IMM is 4 bits and DataA is 8 bits wide

0101 → 00000101 1110 → 1111110

Reading and Writing Memory

- Most data is held in memory (RAM)
- Must be moved into a register in order to operate on it
- Data is also moved out of registers into memory
 - To make room for other data
 - To move it to permanent storage (e.g., disk)

Reading Memory ("Load")

LOAD R3, 4(R1)

<u>Step 1</u>: Form the memory address by adding the value in R1 with the immediate (*offset*) 4

Step 2: Read the data at that address in RAM and place it in R3

Writing Memory ("Store")

STORE R2, 0(R0)

Step 1: Form the memory address by adding the value in R0 with the immediate 0

Step 2: Write the value in R2 into the RAM at that address

Before Next Class

• H&H 7.3.2-7.3.4

Next Time

More Single Cycle Microprocessor