ECE 2300 Digital Logic & Computer Organization Fall 2016

More ALU Multiplication Memories

Cornell University

Arithmetic Logic Unit (ALU)

- Combinational logic circuit that combines a variety of operations into a single unit
- Typical operations may include
 - Addition and subtraction
 - Logical (OR, AND)
 - Shift and rotate
 - Comparisons
- Computing core of a processor

Example 8-bit Arithmetic Logic Unit

• Operations

- Addition and Subtraction
- Bitwise AND and OR
- Shift Left and Shift Right
- Inputs
 - A, B, Carry In (CI)
 - Shift In (SI)
 - Code indicating operation to be performed (OP)
- Outputs
 - Y, Carry Out (CO)
 - Shift Out (SO)
 - Flags regarding the result of the operation

ALU Operations

NAME	ΟΡ	BSEL	CI	LOP	SOP	OSEL	Operation
ADD	000	00	0	I.	-	00	$\mathbf{Y} = \mathbf{A} + \mathbf{B} + \mathbf{CI}$
SUB	001	01	1	-	-	00	$\mathbf{Y} = \mathbf{A} + \mathbf{B'} + \mathbf{CI}$
AND	011	00	-	0	-	01	Y = A AND B
OR	100	00	-	1	-	01	Y = A OR B
SHL	101	-	-	-	0	10	Y = A[60],SI
SHR	110	-	-	-	1	10	Y = SI, A[71]
PASS	111	10	0	-	-	00	$\mathbf{Y} = \mathbf{A} + \mathbf{B} + \mathbf{CI}$

Comparison Operations

- To compare A and B, perform A B
 - If the result is 0, then A = B
 - Z flag set to 1 whenever ALU result is 0
 - Can check for A ≥ B and A < B by observing the MSB of the result (Y) of A B</p>

Multiplication

- Form each partial product by multiplying a single digit of the multiplier by the multiplicand
- Add shifted partial products to get result

Decimal		Binary	
230 x 42	multiplicand multiplier	0101 x 0111	
460 + 920 9660	partial products	0101 0101 0101 + 0000	
	result	0100011	
230 x 42 = 966	5 x 7 = 35		

4 × 4 Multiplier

Memories in Digital Systems

- Memory is used in virtually all digital designs
- Microprocessors have lots of memory
 - Caches
 - Register files
 - Buffers, queues, etc
 - Arrays for logic functions
- Most microprocessor memory is SRAM
 - Very fast
- Main memory uses DRAM

Denser, lower cost/bit, less power

Types of Memories

- Random Access Memory (RAM)
 - Read and write any location at similar speeds
 - Volatile: loses contents when powered off
 - SRAM, DRAM
- Read-Only Memory (ROM)
 - Truly read-only
 - Written in the factory, and never written after installation
 - Mostly read and rarely written
 - Much faster to read than write
 - Non-volatile
 - ROM, PROM, EPROM, EEPROM, Flash memory

General Memory Organization

- Two dimensional array of bit cells
- Each bit cell stores 1 bit
- Address selects a row of data (multiple bit cells)

General Memory Organization

• More detail

Static RAM (SRAM)

- <u>Address</u>: points to the location to read or write
- <u>Data inputs</u>: data to be written into memory
- Data outputs: data read from memory
- <u>Write Enable (WE)</u>: tells whether to read or write
- <u>Chip Select (CS)</u>: selects the chip for reading/writing
- <u>Output Enable (OE)</u>: controls the data output tristate drivers

- $t_{\mbox{\scriptsize ACS}}$ Access time from chip select
- t_{OE} Output enable time
- t_{oz} Output disable time
- t_{OH} Output hold time

- Reduces the number of data pins by half
- Disable output buffer whenever WE_L asserted

Dynamic RAM (DRAM)

- SRAM advantages and disadvantages
 - Very fast (+)
 - High power (–)
 - Relatively high area/bit (–)

• DRAM

- Single transistor storage cell
- Higher density → lower cost/bit
- Lower power/bit

DRAM Bit Structure

- Capacitor accessed through a transistor
- Capacitor is charged through the bit line to store a 1
- Capacitor is discharged through the bit line to store a 0

DRAM Read

- Bit line precharged
 halfway between 0 and 1
- Word line is asserted
- Capacitor voltage pulls the bit line slightly higher or lower
- Sense amplifier detects this small change (1 or 0)

DRAM Organization (64K x 1)

Multiplexed 256 x 256 row address inputs decoder array Row-address strobe (RAS) row address . column address - Selects row of A0-A7 array RAS L control column latches, CAS L multiplexer, and demultiplexer WE I Columnlatch, mux, and address strobe demux control (CAS) - Selects subset DOUT DIN of the row Lecture 14:24

DRAM Refresh

- Capacitors discharge over time
- Refresh cycles recharge each memory bit
- Each row periodically accessed using RAS, which restores the charge

Synchronous DRAM (SDRAM)

- D FFs on input and output signals
- Can "pipeline" multiple read and write operations
- Multiple banks that can be accessed concurrently
- DDR: data transferred on both rising and falling clock edges

Before Next Class

• H&H 7.1-7.3.1

Next Time

More Memories Single Cycle Microprocessor