ECE 2300 Digital Logic & Computer Organization Fall 2016

Metastability Binary Number Representations Binary Arithmetic

Cornell University

Bistable Element Stable States

- Q and QN stuck in the undefined region between 0 and 1
- Eventually moves to stable state, but may take a while

Avoiding Metastability

- Causes of metastability
 - Input changes too soon before a clock edge
 - Input changes too soon after a clock edge
 - Clock pulse that is too narrow
- Avoid by meeting setup time, hold time, and minimum clock pulse width specifications

Asynchronous Inputs

- Inputs from the outside world may arrive at random times with respect to the clock
 - Keystrokes
 - Sensor inputs
 - Data received from a network
 - Sequential circuits with different clock sources that communicate
- Such asynchronous inputs may violate setup/ hold times and cause metastability
- Must be synchronized before being sent to the sequential logic

Synchronizing Circuit

- ASYNCIN may violate FF1 setup/hold times
- But META has a full cycle to settle to a 1 or 0 before it is sampled by FF2
- If META settles before the next triggering edge of the clock, SYNCIN will be stable

Course Content

- Binary numbers and logic gates
- Boolean algebra and combinational logic
- Sequential logic and state machines cut off for Prelim 1
- Binary arithmetic
- Memories
- Instruction set architecture
- Processor organization
- Caches and virtual memory
- Input/output
- Case studies

Positional Number Representation

What does 1432.67 mean?

 $1432.67 = 1 \times 10^{3} + 4 \times 10^{2} + 3 \times 10^{1} + 2 \times 10^{0} + 6 \times 10^{-1} + 7 \times 10^{-2}$

- Base 10 positional representation
- Uses digits 0, 1, 2, ..., 9
- General base B positional representation $a_n a_{n-1} \dots a_2 a_1 a_0 = a_n B^n + a_{n-1} B^{n-1} + \dots + a_2 B^2 + a_1 B^1 + a_0 B^0$ – Uses digits 0, 1, 2, ..., B-1
- Bases of interest to computer designers
 - Base 2, Binary (digits 0,1)
 - Base 16, Hexadecimal (digits 0,1,...,9,A,B,...,E,F)

Binary Numbers

base 10

(decimal)

 Recall weighted positional notation for decimal numbers

329 $10^{2} 10^{1} 10^{0}$ 3x100 + 2x10 + 9x1 = 329

Use similar weighted positional system for binary

Binary Numbers

 For the binary number b_{p-1}b_{p-2}...b₁b₀.b₁b₂...b_n the decimal number is

$$\mathbf{D} = \sum_{i=-n}^{p-1} \mathbf{b}_i \cdot \mathbf{2}^i$$

Examples

 $10011_{2} = 1 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$ = 16 + 0 + 0 + 2 + 1 = 19₁₀

$$101.001_2 = 1 \times 2^2 + 1 \times 2^0 + 1 \times 2^{-3}$$

= 5.125₁₀

Unsigned Binary Numbers

- An *n*-bit unsigned number represents
 2ⁿ base 10 values
 - From 0 to 2ⁿ-1

2 ²	2 ¹	2 ⁰	value
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Unsigned Binary Addition

- Performed just like base-10
 - Add from right to left, propagating carry

Signed Magnitude Representation

- Most significant bit is used as a sign bit
 - Sign bit of 0 for positive (0101 = 5, or 00000101 = 5)
 - Sign bit of 1 for negative (1101 = -5, or 10000101 = -5)
- Range is from -(2ⁿ⁻¹-1) to (2ⁿ⁻¹-1)
- Drawbacks
 - Two representations for zero (+0 and -0)
 - Ordinary addition does not work

00010 (2) +<u>10010</u> (-2) 10100 (not 0)

Radix-Complement Representation

- Complement of an n-digit number formed by subtracting it from rⁿ, where r is the radix
- No sign bit
 - The number itself indicates positive/negative
- 10's complement
 - Example: 2372 → 10⁴ 2372 = 7628 [-2372]
- 2's complement
 - Example: 0101 [5] \rightarrow 2⁴ 0101 = 1011 [-5]

Two's Complement Representation

- MSB has weight -2ⁿ⁻¹
- Range of an n-bit number: -2ⁿ⁻¹ through 2ⁿ⁻¹-1
 - Most negative number (-2ⁿ⁻¹) has no positive counterpart (one more negative than positive)

-2 ³	2 ²	2 ¹	2 ⁰	value	-2 ³	2 ²	2 ¹	2 ⁰	value
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

Two's Complement Representation

- Positive numbers and zero are same as unsigned binary representation
- To form a negative number
 - Start with the positive number
 - Flip every bit
 - Then add one

Two's Complement Shortcut

- To take the two's complement of a number
 - Copy bits from right to left up to and including the first "1"
 - Flip remaining bits to the left

 $\bigcirc \begin{matrix} 011010000 \\ 100101111 \\ + \underbrace{1}{100110000} \end{matrix}$

0110 (flip) 1001 10000 (copy)

Two's Complement Addition

• Procedure for addition is the same as unsigned addition regardless of the signs of the numbers

00101 (5)	01001	(9)
+ <u>11011</u> (-5)	+ <u>10111</u>	(-9)
00000 (0)	00000	(0)

Converting Binary (2's C) to Decimal

- 1. If MSB = 1, take two's complement to get a positive number
- 2. Add powers of 2 for bit positions that have a "1"
- 3. If original number was negative, add a minus sign

$$X = 01101000_{two}$$

= 2⁶+2⁵+2³ = 64+32+8
= 104_{ten}

Assuming 8-bit 2's complement numbers

More Examples

$$X = 00100111_{two}$$

= 2⁵+2²+2¹+2⁰ = 32+4+2+1
= 39_{ten}

$$X = 11100110_{two}$$

-X = 00011010
= 2⁴+2³+2¹ = 16+8+2
= 26_{ten}
X = -26_{ten}

Assuming 8-bit 2's complement numbers

Converting Decimal to Binary (2's C)

First Method: Division

- **1.** Change to positive decimal number
- 2. Divide by two remainder is least significant bit
- 3. Keep dividing by two until answer is zero, recording remainders from right to left
- 4. Append a zero as the MSB; if original number was negative, take two's complement

X = 104 _{ten}	104/2 =	52 r0	bit 0
	52/2 =	26 r0	bit 1
	26/2 =	13 r0	bit 2
	13/2 =	6 r1	bit 3
	6/2 =	3 r0	bit 4
	3/2 =	1 r1	bit 5
	1/2 =	0 r1	bit 6
$X = 01101000_{two}$			

Converting Decimal to Binary (2's C)

Se	econd Method: Subtract Po	wers of Two		n	2 n
1	Change to positive decin	nal number		0	1
2	Subtract largest power o less than or equal to nun			1 2	2 4
3	Put a one in the correspo	onding bit positio	n	3	8
4	Keep subtracting until re	sult is zero		4	16
_	1 5			5	32
J	Append a zero as MSB;	tales freeda a secola		6	64
	if original was negative,	take two's comple	ement	7	128
г				8	256
	$X = 104_{ten}$	104 - 64 = 40	bit 6	9	512
	ien ien	40 - 32 = 8 8 - 8 = 0	bit 5 bit 3	10	1024
	X=01101000 _{two}				

Hexadecimal Notation

- Often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers
 - Fewer digits: 4 bits per hex digit
 - Less error prone: easy to misread long string of 1's and 0's

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	Α	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15

Converting from Binary to Hex

- Every group of four bits is a hex digit
 - Start grouping from right-hand side

This is not a new machine representation, just a convenient way to write the number

