# ECE 2300 <br> Digital Logic \& Computer Organization 

 Fall 2016Metastability<br>Binary Number Representations<br>Binary Arithmetic

Cornell University

## Bistable Element Stable States



## Metastable State



- $Q$ and $Q N$ stuck in the undefined region between 0 and 1
- Eventually moves to stable state, but may take a while


## How Can This Happen?



## Stable FF Situation



## Metastable Condition

## CLOCK


metastable resolution time

## Avoiding Metastability

- Causes of metastability
- Input changes too soon before a clock edge
- Input changes too soon after a clock edge
- Clock pulse that is too narrow
- Avoid by meeting setup time, hold time, and minimum clock pulse width specifications


## Asynchronous Inputs

- Inputs from the outside world may arrive at random times with respect to the clock
- Keystrokes
- Sensor inputs
- Data received from a network
- Sequential circuits with different clock sources that communicate
- Such asynchronous inputs may violate setup/ hold times and cause metastability
- Must be synchronized before being sent to the sequential logic


## Synchronizing Circuit



- ASYNCIN may violate FF1 setup/hold times
- But META has a full cycle to settle to a 1 or 0 before it is sampled by FF2
- If META settles before the next triggering edge of the clock, SYNCIN will be stable


## Course Content

- Binary numbers and logic gates
- Boolean algebra and combinational logic
- Sequential logic and state machines cut off for Prelim 1
- Binary arithmetic
- Memories
- Instruction set architecture
- Processor organization
- Caches and virtual memory
- Input/output
- Case studies


## Positional Number Representation

- What does 1432.67 mean?
$1432.67=1 \times 10^{3}+4 \times 10^{2}+3 \times 10^{1}+2 \times 10^{0}+6 \times 10^{-1}+7 \times 10^{-2}$
- Base 10 positional representation
- Uses digits 0, 1, 2, ... 9
- General base $B$ positional representation $a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}=a_{n} B^{n}+a_{n-1} B^{n-1}+\ldots+a_{2} B^{2}+a_{1} B^{1}+a_{0} B^{0}$
- Uses digits $0,1,2, \ldots, B-1$
- Bases of interest to computer designers
- Base 2, Binary (digits 0,1 )
- Base 16, Hexadecimal (digits 0,1,..,9,A,B,...,E,F)


## Binary Numbers

- Recall weighted positional notation for decimal numbers

| 329 <br> / <br> $10^{2} \quad 10^{1} \quad 10^{0}$ | base 10 <br> (decimal) |
| :---: | :---: |
| $3 \times 100+2 \times 10+9 \times 1=329$ |  |

- Use similar weighted positional system for binary

| Most <br> Significant <br> Bit (MSB) 101 101 Least <br> Significant <br> Bit (LSB) <br>  $2^{2}$ $2^{1}$ $2^{0}$ | base 2 (binary) |
| :---: | :---: |
| $1 \times 4+0 \times 2+1 \times 1=5$ |  |

## Binary Numbers

- For the binary number $b_{p-1} b_{p-2} \ldots b_{1} b_{0} \cdot b_{-1} b_{-2} \ldots b_{-n}$ the decimal number is

$$
D=\sum_{i=-n}^{p-1} b_{i} \cdot 2^{i}
$$

- Examples

$$
\begin{aligned}
10011_{2} & =1 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =16+0+0+2+1 \\
& =19_{10}
\end{aligned}
$$

$$
\begin{aligned}
101.001_{2} & =1 \times 2^{2}+1 \times 2^{0}+1 \times 2^{-3} \\
& =5.125_{10}
\end{aligned}
$$

## Unsigned Binary Numbers

- An n-bit unsigned number represents $2^{n}$ base 10 values
- From 0 to $\mathbf{2 n}^{\mathbf{n}} \mathbf{- 1}$

| $2^{2}$ | $2^{1}$ | $2^{0}$ | value |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 2 |
| 0 | 1 | 1 | 3 |
| 1 | 0 | 0 | 4 |
| 1 | 0 | 1 | 5 |
| 1 | 1 | 0 | 6 |
| 1 | 1 | 1 | 7 |

## Unsigned Binary Addition

- Performed just like base-10
- Add from right to left, propagating carry

$10010{ }^{(18)} \quad 10010{ }^{(18)}$<br>1111<br>$$
\begin{equation*}
+\underline{1001}^{(9)}+\underline{1011}{ }^{(11)}+00011 \tag{15}
\end{equation*}
$$<br>$$
11101{ }^{(29)} 10010
$$<br>$$
\text { 1oํำ }{ }_{(23)}
$$<br>$$
+\underline{111}^{(7)}
$$<br>$$
11110 \text { (30) }
$$

## Signed Magnitude Representation

- Most significant bit is used as a sign bit
- Sign bit of 0 for positive ( $0101=5$, or $00000101=5$ )
- Sign bit of 1 for negative ( $1101=-5$, or $10000101=-5$ )
- Range is from -( $\left.2^{\mathrm{n}-1}-1\right)$ to $\left(2^{\mathrm{n}-1}-1\right)$
- Drawbacks
- Two representations for zero (+0 and -0)
- Ordinary addition does not work

$$
\begin{array}{r}
00010 \\
+\mathbf{1 0 0 1 0}_{(\text {(2) }}^{(-2)} \\
\left.\mathbf{1 n o t}_{0}\right)
\end{array}
$$

## Radix-Complement Representation

- Complement of an n-digit number formed by subtracting it from $r^{n}$, where $r$ is the radix
- No sign bit
- The number itself indicates positive/negative
- 10's complement
- Example: $2372 \rightarrow 10^{4}$ - $2372=7628$ [-2372]
- 2's complement
- Example: 0101 [5] $\rightarrow 2^{4}$ - $0101=1011$ [-5]


## Two's Complement Representation

- MSB has weight - $2^{n-1}$
- Range of an n-bit number: - $2^{\mathrm{n}-1}$ through $2^{\mathrm{n}-1}-1$
- Most negative number (-2 ${ }^{\text {n-1 }}$ ) has no positive counterpart (one more negative than positive)

| -2 ${ }^{3}$ | $2^{2}$ | $2^{1}$ | 20 | value | -2 ${ }^{3}$ | $2{ }^{2}$ | 21 | $2{ }^{0}$ | value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -8 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | -7 |
| 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | -6 |
| 0 | 0 | 1 | 1 | 3 | 1 | 0 | 1 | 1 | -5 |
| 0 | 1 | 0 | 0 | 4 | 1 | 1 | 0 | 0 | -4 |
| 0 | 1 | 0 | 1 | 5 | 1 | 1 | 0 | 1 | -3 |
| 0 | 1 | 1 | 0 | 6 | 1 | 1 | 1 | 0 | -2 |
| 0 | 1 | 1 | 1 | 7 | 1 | 1 | 1 | 1 | -1 |

## Two's Complement Representation

- Positive numbers and zero are same as unsigned binary representation
- To form a negative number
- Start with the positive number
- Flip every bit
- Then add one



## Two's Complement Shortcut

- To take the two's complement of a number
- Copy bits from right to left up to and including the first "1"
- Flip remaining bits to the left
$\triangleleft_{100101111}^{01101000}$
$+\frac{1}{100110000}$


## Two's Complement Addition

- Procedure for addition is the same as unsigned addition regardless of the signs of the numbers

00101 (5)<br>01001 (9)<br>+11011 (-5)<br>00000 (0)<br>$+10111_{(-9)}^{( }$<br>00000 (0)

## Converting Binary (2's C) to Decimal

1. If MSB $=1$, take two's complement to get a positive number
2. Add powers of 2 for bit positions that have a " 1 "
3. If original number was negative, add a minus sign

$$
\begin{aligned}
X & =01101000_{\text {two }} \\
& =2^{6}+2^{5}+2^{3}=64+32+8 \\
& =104_{\text {ten }}
\end{aligned}
$$

Assuming 8-bit 2's complement numbers

| $n$ | $2 n$ |
| ---: | :--- |
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |
| 3 | 8 |
| 4 | 16 |
| 5 | 32 |
| 6 | 64 |
| 7 | 128 |
| 8 | 256 |
| 9 | 512 |
| 10 | 1024 |

## More Examples

$$
\begin{aligned}
X & =00100111_{\text {two }} \\
& =2^{5}+2^{2}+2^{1}+2^{0}=32+4+2+1 \\
& =39_{\text {ten }}
\end{aligned}
$$

$$
\begin{aligned}
X & =11100110_{\text {two }} \\
-X & =00011010 \\
& =2^{4}+2^{3}+2^{1}=16+8+2 \\
& =26_{\text {ten }} \\
X & =-26_{\text {ten }}
\end{aligned}
$$



Assuming 8-bit 2's complement numbers

## Converting Decimal to Binary (2's C)

First Method: Division

1. Change to positive decimal number
2. Divide by two - remainder is least significant bit
3. Keep dividing by two until answer is zero, recording remainders from right to left
4. Append a zero as the MSB;
if original number was negative, take two's complement

$$
\begin{array}{llll}
\mathrm{X}=104_{\text {ten }} & 104 / 2 & =52 \mathrm{ro} & \text { bit } 0 \\
& 52 / 2 & =26 \mathrm{ro} & \text { bit } 1 \\
26 / 2 & =13 \mathrm{r0} & \text { bit } 2 \\
13 / 2 & =6 \mathrm{r} 1 & \text { bit } 3 \\
6 / 2 & =3 \mathrm{ro} & \text { bit } 4 \\
& 3 / 2 & =1 \mathrm{r} 1 & \text { bit } 5 \\
& 1 / 2 & =0 \mathrm{r} 1 & \text { bit } 6
\end{array}
$$

## Converting Decimal to Binary (2's C)

Second Method: Subtract Powers of Two

1. Change to positive decimal number
2. Subtract largest power of two less than or equal to number
3. Put a one in the corresponding bit position
4. Keep subtracting until result is zero
5. Append a zero as MSB; if original was negative, take two's complement

$$
\begin{array}{|lrl}
\mathrm{X}=104_{\text {ten }} & 104-64=40 & \text { bit } 6 \\
& 40-32=8 & \text { bit } 5 \\
8-8=0 & \text { bit } 3
\end{array}
$$

| $n$ | $2^{n}$ |
| ---: | :--- |
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |
| 3 | 8 |
| 4 | 16 |
| 5 | 32 |
| 6 | 64 |
| 7 | 128 |
| 8 | 256 |
| 9 | 512 |
| 10 | 1024 |

## Hexadecimal Notation

- Often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers
- Fewer digits: 4 bits per hex digit
- Less error prone: easy to misread long string of 1's and 0's

| Binary | Hex | Decimal |
| :---: | :---: | :---: |
| 0000 | 0 | 0 |
| 0001 | 1 | 1 |
| 0010 | 2 | 2 |
| 0011 | 3 | 3 |
| 0100 | 4 | 4 |
| 0101 | 5 | 5 |
| 0110 | 6 | 6 |
| 0111 | 7 | 7 |


| Binary | Hex | Decimal |
| :---: | :---: | :---: |
| 1000 | 8 | 8 |
| 1001 | 9 | 9 |
| 1010 | A | 10 |
| 1011 | B | 11 |
| 1100 | C | 12 |
| 1101 | D | 13 |
| 1110 | E | 14 |
| 1111 | F | 15 |

## Converting from Binary to Hex

- Every group of four bits is a hex digit
- Start grouping from right-hand side


[^0]
## Before Next Class

- H\&H 5.3


## Next Time

More Binary Arithmetic


[^0]:    This is not a new machine representation, just a convenient way to write the number

