ECE 2300
 Digital Logic \& Computer Organization

 Fall 2016Hazards, Timing, Clocking

Propagation Delay

- Time for change in input to change the output
- Typically specified between 50\% points

- Circuits have minimum and maximum propagation delays
- Minimum sometimes called the contamination delay and maximum the propagation delay

Timing Diagram

- Shows how outputs respond to changes in inputs over time

TIME

Timing Diagram

Hazard (Glitch)

- Unplanned momentary switching of an output
- Occurs when different paths through circuit have different propagation delays

Types of Hazards

- Static 1-hazard
- Input change causes output to go from 1 to 0 to 1 (should have stayed 1)

- Static 0-hazard
- Input change causes output to go
 from 0 to 1 to 0 (should have stayed 0)
- Dynamic hazards
- Input change causes a change from 0 to 1 to 0 to 1 or from 1 to 0 to 1 to 0 (there should be just one change)

Static 1 Hazards

- Glitches due to unequal signal propagation delays through the circuit
- Output signal should stay at 1, but shows a transient 0 value

Assume X and Y are 1
Z changes from 1 to 0

Timing Diagram Showing Glitch

Eliminating Static 1 Hazards

- Identify prime implicants that are not overlapping in Karnaugh map
- Include consensus terms to cover transitions between product terms

Hazard Detection and Elimination

$F=X \cdot Z^{\prime}+Y \cdot Z$

Adding a consensus term

Glitch-free Design Timing Diagram

Do Glitches Matter?

- Yes
- FF clocks and latch enables (and asynch resets!)
- No
- Most other combinational logic glitches are fine, so long as they settle before the rising clock edge

Sequential Circuit Timing

- FFs and latches must meet specified setup time and hold time requirements
- The worst case setup time (longest timing path) determines the maximum clock frequency
- Timing analysis involves calculating the time delays between all FF pairs within the circuit
- To determine the maximum operating frequency
- To ensure that hold time requirements are met

Setup and Hold Time

Setup Time

- FF input must be stable $\mathrm{t}_{\text {setup }}$ before the triggering FF clock transition

Setup Time Determines Clock Frequency

$$
t_{\mathrm{clk}} \geq \mathrm{t}_{\mathrm{ffpd}(\max)}+\mathrm{t}_{\mathrm{comb}(\max)}+\mathrm{t}_{\text {setup }}
$$

Setup Time Determines Clock Frequency

- $\mathrm{t}_{\mathrm{clk}} \geq \mathrm{t}_{\mathrm{ffpd}(\max)}+\mathrm{t}_{\text {comb(max) }}+\mathrm{t}_{\text {setup }}$
- Every circuit path between every pair of FFs must satisfy the above equation to run the circuit at a frequency of $1 / \mathrm{t}_{\text {clk }}$
- The worst case situation is assumed
- Longest delay through the circuit
- Worst case temperature and voltage
- Worst case manufacturing variations

Clock Skew May Make Matters Worse

- Clock may not reach all flip-flops simultaneously

- We assume the worst case clock skew situation when calculating setup and hold time

Setup Time Without Clock Skew

$$
t_{\mathrm{clk}} \geq \mathrm{t}_{\mathrm{ffpd}(\max)}+\mathrm{t}_{\mathrm{comb}(\max)}+\mathrm{t}_{\text {setup }}
$$

Setup Time With Worst Case Clock Skew

What About This Situation?

CLK2

Hold Time

- FF input must stay stable $t_{\text {hold }}$ after the triggering FF clock transition

Hold Time With Clock Skew

Could Even Clock the Wrong Data!

Setup and Hold Time Calculations

Setup and Hold Time Calculations

Setup and Hold Time Calculations

Clock Distribution

CLOCK

- Tree-like structure (often an "H-tree")
- Dedicated metal layers (avoid noise, routing contention)
- Wide metal lines (low $R \rightarrow$ low RC time constant)
- Clock buffers for large clock trees

Binary Up Counter Revisited

Binary Up Counter Revisited

Avoid the temptation to mess with the clock input!

Before Next Class

- H\&H 1.4, 5.1-5.2.6

Next Time

Metastability
Binary Arithmetic

