ECE 2300 Digital Logic & Computer Organization Fall 2016

Hazards, Timing, Clocking

Cornell University

Propagation Delay

- Time for change in input to change the output
- Typically specified between 50% points

- Circuits have *minimum* and *maximum* propagation delays
 - Minimum sometimes called the contamination delay and maximum the propagation delay

Timing Diagram

Shows how outputs respond to changes in inputs over time

Hazard (Glitch)

- Unplanned momentary switching of an output
- Occurs when different paths through circuit have different propagation delays

Types of Hazards

• Static 1-hazard

 Input change causes output to go from 1 to 0 to 1 (should have stayed 1)

• Static 0-hazard

 Input change causes output to go from 0 to 1 to 0 (should have stayed 0)

Dynamic hazards

 Input change causes a change from 0 to 1 to 0 to 1 or from 1 to 0 to 1 to 0 (there should be just one change)

o|'

Static 1 Hazards

- Glitches due to unequal signal propagation delays through the circuit
- Output signal should stay at 1, but shows a transient 0 value

Assume X and Y are 1 Z changes from 1 to 0

Eliminating Static 1 Hazards

- Identify prime implicants that are not overlapping in Karnaugh map
- Include consensus terms to cover transitions between product terms

Do Glitches Matter?

• Yes

- FF clocks and latch enables (and asynch resets!)

Sequential Circuit Timing

- FFs and latches must meet specified setup time and hold time requirements
- The worst case setup time (longest timing path) determines the maximum clock frequency
- *Timing analysis* involves calculating the time delays between all FF pairs within the circuit
 - To determine the maximum operating frequency
 - To ensure that hold time requirements are met

Setup Time

 FF input must be stable t_{setup} before the triggering FF clock transition

Setup Time Determines Clock Frequency

- $t_{clk} \ge t_{ffpd(max)} + t_{comb(max)} + t_{setup}$
- Every circuit path between every pair of FFs must satisfy the above equation to run the circuit at a frequency of 1/t_{clk}
- The worst case situation is assumed
 - Longest delay through the circuit
 - Worst case temperature and voltage
 - Worst case manufacturing variations

Clock Skew May Make Matters Worse

Clock may not reach all flip-flops simultaneously

• We assume the worst case clock skew situation when calculating setup and hold time

Setup Time Without Clock Skew

Hold Time

 FF input must stay stable t_{hold} after the triggering FF clock transition

- Tree-like structure (often an "H-tree")
- Dedicated metal layers (avoid noise, routing contention)
- Wide metal lines (low R → low RC time constant)
- Clock buffers for large clock trees

Binary Up Counter Revisited

Avoid the temptation to mess with the clock input!

Before Next Class

• H&H 1.4, 5.1-5.2.6

Next Time

Metastability Binary Arithmetic