ECE 2300

Digital Logic & Computer Organization

More Finite State Machines

;) Cornell University

Fall 2016

Lecture 9: 1

FSM: General Form

Inputs

: . : Outputs
— pJCombinational | 4,
Logic

>
e
3
Current — Next
State : State
(S) (S)
FF <
CLK

Lecture 9: 3

) Output — >
o Combinational]
- . : Outputs
Moore Machine ol Logic S O
® -
: Next State
¢—p{ Combinational |
.> Logic .
Inputs s
P
FE[——
Outputs depend on Current L— Next
current state value State : State
(S) (S’)
|
FF
CLK

Lecture 9: 4

Mealy Machine | —>

Inputs

Outputs depend on input
and current state values

CLK

—>
. Output -
Combinational] : Outputs
—P> Logic >
—>>
*——>
. Next State
—P{Combinational| .
> Logic :
-
FF[®
Current T Next
State State
(S) . ()
¢
FF

Lecture 9: 5

Example FSM: Pattern Detector

Monitors the input, and outputs a 1 whenever a
specified input pattern is detected

Example: Output a 1 whenever 111 is detected
on the input for 3 consecutive clock cycles

— Overlapping patterns also detected (1111...)

Input /n

Output Out

Reset causes FSM to start in initial state
Clock input not shown (always present)

Lecture 9: 6

111 Pattern Detector Timing

Lecture 9: 7

FSM Design Procedure

(1) Understand the problem statement and
determine inputs and outputs

(2) Identify states and create a state diagram
(3) Determine the number of required D FFs

(4) Implement combinational logic for outputs
and next state

(5) Simulate the circuit to test its operation

Lecture 9: 8

Transition/Output Table

Shows the next state (S’) and output values for
each combination of current state (S) and inputs

Used to derive the minimized state transition (S’)
and output Boolean equations

Version 1: uses descriptive state names
Version 2: uses state binary encodings

Text shows different type of T/O table

Lecture 9: 9

Moore Transition/Output Table 1

In =1 In =1 In =1

‘ In

Reset

=

I

o
I
o

In=0 In =1
In=0
Current Next State (S’)

State (S) In=0 In =1 Out
Init Init Got1 0
Got1 Init Got11 0
Got11 Init Got111 0
Got111 Init Got111 1

Lecture 9:10

Moore Transition/Output Table 2

Reset

In =1 In =1 In =1
Init Got1
Out=0 In=0 Out=0
‘ [00] n= [01] ‘
n=0 In=0 In =1
In=0
S1’ So’
S1 So In=0 In =1 Out
00 00 01 0
01 00 10 0
10 00 11 0
11 00 11 1

Lecture 9: 11

Minimized Equations for S’ and Out

S1’ So’
S1 So In=0 In = 1 Out
00 00 01 0
01 00 10 0
10 00 11 0
11 00 11 1

Lecture 9:12

Mealy Transmon/Output Table 1

In = 1 In = 1
Reset Out = Out =

Current Next State (S’), Out
State (S)

In=0 In=1
Init Init, 0 Got1, 0
Got1 Init, 0 Got11, 0
Got11 Init, 0 Got11, 1

Lecture 9:13

Mealy Transmon/Output Table 2

S1’ So’, Out
S1 S0 In=0 In = 1
00 00,0 01,0
01 00,0 10,0
10 00,0 10, 1

Lecture 9:14

Minimized Equations for S’ and Out

S1’ So’, Out
S1So In=0 In = 1
00 00,0 01,0
01 00,0 10,0
10 00,0 10, 1

Lecture 9:15

FSMs in Verilog

<module statement>
<input and output declarations>

<reg declarations>

<parameter or typedef statement>
<always block for next state>
<always block for output>
<always block for state D FFs>

endmodule

Lecture 9:16

Moore FSM in Verilog

In =1 In =1

Reset

module PatDectMoore (Clk, In, Reset, Out);
input CIk, In, Reset;
output Out;

reg Out;
reg [1:0] Scurr, Snext;

parameter [1:0] Init = 2'b00,
Got1 = 2'b01,
Got11 = 2'b10,
Got111 = 2'b11;

Lecture 9:17

Moore FSM in Verilog

In =1 In =1

Reset

always @ (In, Scurr)
begin
case (Scurr)

Init: if (In == 1) Snext = Got1; else Snext = Init;
Got1: if (In == 1) Snext = Got11; else Snext = Init;
Got11: if (In == 1) Snext = Got111; else Snext = Init;
Got111: if (In == 1) Snext = Got111; else Snext = Init;
default: Snext = Init;

endcase
end

next state
comb logic

Lecture 9:18

Moore FSM in Verilog

In =1 In =1

Reset

always @ (Scurr)

if (Scurr == Got111) Out = 1; else Out = 0; output comb logic
always @ (posedge Clk, posedge Reset) clock + async reset

if (Reset == 1) Scurr <= |nit; else Scurr <= Snext; state D FFs
endmodule

Lecture 9:19

Mealy FSM in Verilog

In = 1 In = 1
Reset Out = Out =

module PatDectMealy (CIk, In, Reset, Out);
input CIk, In, Reset;
output Out;

reg Out;
reg [1:0] Scurr, Snext;

parameter [1:0] Init = 2'b00,
Got1 = 2'b01,
Got11 = 2'b10;

Lecture 9:20

Mealy FSM in Verilog

In = 1 In = 1
Reset Out = Out =

always @ (In, Scurr)
begin
case (Scurr)
Init: if (In == 1) Snext = Got1; else Snext = Init;
Got1: if (In == 1) Snext = Got11; else Snext = Init;
Got11: if (In == 1) Snext = Got11; else Snext = Init;
default: Snext = Init;

next state
comb logic

endcase
end

Lecture 9:21

Mealy FSM in Verilog

In = 1 In = 1
Reset Out = Out =

n:
Out =1

always @ (Scurr, In)
if ((Scurr == Got11) && (In == 1)) Out = 1; else Out =0; output comb logic

always @ (posedge Clk, posedge Reset) clock + async reset
if (Reset == 1) Scurr <= Init; else Scurr <= Snext; state D FFs
endmodule

Lecture 9:22

Example FSM: Pushbutton Lock
Two pushbutton inputs, X1 and X2

One output, UL (“Unlock™)

UL =1 when X1 is pushed, followed by X2 being
pushed twice (X1, X2, X2)

Represent X1 and X2 as two bit input
— 00: neither button pushed

— 01: X2 pushed

— 10: X1 pushed

— 11: both pushed simultaneously
Lecture 9:23

Pushbutton Lock: Moore State Diagram

X1 X2

UL =1
[11]

- a4 00
- OO0

Lecture 9:24

Transition/Output Tables

Lecture 9:25

Minimized Equations for S’ and UL

Lecture 9:26

Next State always Block

Lecture 9:27

Output always Block

Lecture 9:28

State FFs always Block

Lecture 9:29

Next Time

Factoring FSMs
Analyzing FSMs

Lecture 9:30

