
Lecture 8:

Fall 2016

ECE 2300
Digital Logic & Computer Organization

More Verilog
Finite State Machines

1



Lecture 8: 3

Verilog Programming Styles
• Structural

– Textual equivalent of drawing a schematic
– Uses instance statements

• Dataflow
– Describes circuit in terms of flow of data and 

operations on that data
– Uses continuous-assignment statements
– Called “structural” in textbook

• Behavioral
– High-level algorithmic description
– Uses procedural code



Lecture 8: 4

Structural Style
module V2to4dec_struct( i0,i1,en,y0,y1,y2,y3 );
   input i0,i1,en;
   output y0,y1,y2,y3;
   wire noti0,noti1;

   not U1(noti0,i0);
   not U2(noti1,i1);
   and U3(y0,noti0,noti1,en);
   and U4(y1,     i0,noti1,en);
   and U5(y2,noti0,     i1,en);
   and U6(y3,     i0,     i1,en);
endmodule

Correspondence
with schematic



Lecture 8: 5

Dataflow Style
module V2to4dec_df( i0,i1,en,y0,y1,y2,y3 );
  input i0,i1,en;
  output y0,y1,y2,y3;

  assign y0 = en & ~i0 & ~i1;
  assign y1 = en &   i0 & ~i1;
  assign y2 = en & ~i0 &   i1;
  assign y3 = en &   i0 &   i1;
endmodule

Correspondence
with Boolean logic

Only used for 
combination logic

New value is assigned to
the lhs whenever any value 

on the rhs changes



Lecture 8: 6

Behavioral Style
module V2to4dec_beh( i0,i1,en,y0,y1,y2,y3 );
   input i0,i1,en;
   output reg y0,y1,y2,y3;

   always @ (en, i0, i1)
   begin
     y0 = en & ~i0 & ~i1;
     y1 = en &  i0 & ~i1; 
     y2 = en & ~i0 &  i1;
     y3 = en &  i0 &  i1;
   end
endmodule

• Procedural code

• Key element is the 
always block 

• Can be used for both 
combinational and 
sequential logic

• reg needed for variables 
on lhs of procedure 
statements



Lecture 8: 7

Always Blocks
• Always block starts execution when the value 

of any signal in the sensitivity list changes

• Execution continues until there are no more 
changes in sensitivity list

• Always blocks execute concurrently with other 
always blocks, instance statements, and 
continuous assignment statements in a module



Lecture 8:

Sequential Logic Using Always Blocks
• Sequential logic can only be modeled using 

always blocks

8

reg q1, q2; 
  
always @( clk, d )  
begin  
  if ( clk )  
      q1 <= d;  
end  
 
always @( posedge clk )  
begin  
  q2 <= d;  
end  
 

Q D 

C 

q1 

clk 

d 

Q D 

CLK 

q2 

clk 

d 



Lecture 8: 9

Blocking and Nonblocking Assignments
• Blocking statement

– A = B & C;
– Assignment is immediate

• Nonblocking statement
– A <= B & C;
– Assignment is delayed until end of always block

always
begin
   A <= B & C;
   D <= ~A;
end

always
begin
   A = B & C;
   D = ~A;
end
A = B & C 
D = ~(B & C)

A = B & C     D = ~A



Lecture 8:10

• Use blocking (=) assignments in always blocks 
intended as combinational logic

• Use nonblocking (<=) assignments in always 
blocks intended as sequential logic

• Do not mix blocking and nonblocking 
assignments in the same always block

• Do not make assignments to the same variable 
in two different always blocks

General Guidelines



Lecture 8: 11

Inferred Latches In Comb Logic
• Each variable within an always block should get  

assigned a value under all possible conditions
– Otherwise, the compiler assumes that the last value 

should be used, and will create a latch

reg dout;  
always @(din, c)  
begin 
 /* dout not always assigned  
     a value; latch inferred */ 
  if (c == 1'b1) 
    dout = din; 
end  

reg dout;  
always @(din, c)  
begin 
   /* dout assigned a value in both   
      conditions, latch not inferred */ 
  if (c == 1'b1)  
    dout = din;  
  else              
    dout = ~din; 
end  



Lecture 8:12

Verilog Code for ’163 Counter
module counter (CLK, CLR_L, LD_L, ENP, ENT, D, Q, RC0);
   input CLK, CLR_L, LD_L, ENP, ENT;
   input [3:0] D;
   output reg [3:0] Q;
   output reg RC0;

   always @ (posedge CLK)
      if (CLR_L ==0)   Q <= 4'b0;
      else if (LD_L == 0)   Q <= D;
      else if ((ENT ==1) && (ENP ==1))  Q <= Q+1;
      else     Q <= Q;

   always @ (Q, ENT)
      if ((ENT == 1) && (Q == 4'd15)) RC0 = 1;
      else     RC0 = 0;
endmodule



Lecture 8:

Sequential Logic
• Many logic functions require information about 

the past in addition to the current inputs
– Vending machine controller
– Traffic light system
– Microprocessor control unit

• Such sequential logic circuits are implemented 
using combinational logic and storage

• One important sequential logic circuit is a 
Finite State Machine (FSM)

13



Lecture 8:

Finite State Machine

• The state embodies the condition of the system 
at this particular time

• The combinational logic determines the output  
and next state values

• The output values may depend only on the 
current state value, or on the current state and 
input values 14

Combinational
Logic

Inputs Outputs

State 
Next
State

Current
State



Lecture 8:

Elements of a FSM
1. A finite number of states
2. A finite number of inputs
3. A finite number of outputs
4. A specification of all 

state transitions
5. A specification of the output values

Described by a state diagram
• Inputs and current state trigger state transitions
• Output changes triggered by changes in 

• Current state, or 
• Current state + inputs

15

Combinational
Logic

Inputs Outputs

State 

Next
State

Current
State



Lecture 8:

FSM: General Form

•••

•••
•••

•••
•••

Inputs Outputs

Next
State

Current
State

FF

FF

Combinational
Logic

CLK

16



Lecture 8:

 Moore Machine

Outputs depend on 
current state value •••

•••

•••
•••Inputs

Outputs

Next
State

Current
State

FF

FF

Next State
Combinational

Logic

Output
Combinational

Logic
•••

•••

17



Lecture 8:

Mealy Machine 

Inputs

Outputs

Next
State

Current
State

FF

FF

Next State
Combinational

Logic

Output
Combinational

Logic

Outputs depend on input 
and current state values

18

•••

•••

•••

•••

•••

•••

•••



Lecture 8:19

FSM Design Procedure
(1) Understand the problem statement and 

determine inputs and outputs

(2) Identify states and create a state diagram

(3) Determine the number of required D FFs

(4) Implement combinational logic for outputs 
and next state

(5) Simulate the circuit to test its operation



Lecture 8:

State Diagram
• Visual specification of a FSM

• Bubble for every state

• Arcs showing state transitions

• Input values shown on the arcs

• Output values shown within the bubbles 
(Moore) or on the arcs (Mealy)

• Clock input not shown (always present)
20



Lecture 8:

Moore State Diagram

21

Moore FSM
Reset

S0
0

S1
0

S2
1

0

0 1

1 0
1

• 1 input, 1 output, 3 states
• Bubble for each state
• State transitions (arcs) for each input value
• Input values on the arcs
• Output values within the bubbles
• Starts at S0 when Reset asserted 



Lecture 8:

Mealy State Diagram

22

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM

• 1 input, 1 output, 2 states
• Bubble for each state
• State transitions (arcs) for each input value
• Input values on the arcs (first number)
• Output values on the arcs (second number)
• Starts at S0 when Reset asserted 



Lecture 8:

Example FSM: Pattern Detector
• Monitors the input, and outputs a 1 whenever a 

specified input pattern is detected

• Example: Output a 1 whenever 111 is detected 
on the input for 3 consecutive clock cycles
– Overlapping patterns also detected (1111...)

• Input In
• Output Out
• Reset causes FSM to start in initial state
• Clock input not shown (always present) 

23



Lecture 8:

111 Pattern Detector:  Moore State Diagram

24



Lecture 8:

111 Pattern Detector:  Mealy State Diagram

25



Lecture 8:

Example FSM: Pushbutton Lock

26

• Two pushbutton inputs, X1 and X2

• One output, UL (“Unlock”)

• UL = 1 when X1 is pushed, followed by X2 being 
pushed twice (X1, X2, X2)

• Represent X1 and X2 as two bit input
– 00: neither button pushed
– 01: X2 pushed
– 10: X1 pushed
– 11: both pushed simultaneously 



Lecture 8:

Pushbutton Lock:  Moore State Diagram

27



Lecture 8:

Pushbutton Lock:  Mealy State Diagram

28



Lecture 8:

Next Time

More Finite State Machines

29




