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Verilog Programming Styles
• Structural

– Textual equivalent of drawing a schematic
– Uses instance statements

• Dataflow
– Describes circuit in terms of flow of data and 

operations on that data
– Uses continuous-assignment statements
– Called “structural” in textbook

• Behavioral
– High-level algorithmic description
– Uses procedural code
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Structural Style
module V2to4dec_struct( i0,i1,en,y0,y1,y2,y3 );
   input i0,i1,en;
   output y0,y1,y2,y3;
   wire noti0,noti1;

   not U1(noti0,i0);
   not U2(noti1,i1);
   and U3(y0,noti0,noti1,en);
   and U4(y1,     i0,noti1,en);
   and U5(y2,noti0,     i1,en);
   and U6(y3,     i0,     i1,en);
endmodule

Correspondence
with schematic
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Dataflow Style
module V2to4dec_df( i0,i1,en,y0,y1,y2,y3 );
  input i0,i1,en;
  output y0,y1,y2,y3;

  assign y0 = en & ~i0 & ~i1;
  assign y1 = en &   i0 & ~i1;
  assign y2 = en & ~i0 &   i1;
  assign y3 = en &   i0 &   i1;
endmodule

Correspondence
with Boolean logic

Only used for 
combination logic

New value is assigned to
the lhs whenever any value 

on the rhs changes
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Behavioral Style
module V2to4dec_beh( i0,i1,en,y0,y1,y2,y3 );
   input i0,i1,en;
   output reg y0,y1,y2,y3;

   always @ (en, i0, i1)
   begin
     y0 = en & ~i0 & ~i1;
     y1 = en &  i0 & ~i1; 
     y2 = en & ~i0 &  i1;
     y3 = en &  i0 &  i1;
   end
endmodule

• Procedural code

• Key element is the 
always block 

• Can be used for both 
combinational and 
sequential logic

• reg needed for variables 
on lhs of procedure 
statements
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Always Blocks
• Always block starts execution when the value 

of any signal in the sensitivity list changes

• Execution continues until there are no more 
changes in sensitivity list

• Always blocks execute concurrently with other 
always blocks, instance statements, and 
continuous assignment statements in a module
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Sequential Logic Using Always Blocks
• Sequential logic can only be modeled using 

always blocks
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reg q1, q2; 
  
always @( clk, d )  
begin  
  if ( clk )  
      q1 <= d;  
end  
 
always @( posedge clk )  
begin  
  q2 <= d;  
end  
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Blocking and Nonblocking Assignments
• Blocking statement

– A = B & C;
– Assignment is immediate

• Nonblocking statement
– A <= B & C;
– Assignment is delayed until end of always block

always
begin
   A <= B & C;
   D <= ~A;
end

always
begin
   A = B & C;
   D = ~A;
end
A = B & C 
D = ~(B & C)

A = B & C     D = ~A
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• Use blocking (=) assignments in always blocks 
intended as combinational logic

• Use nonblocking (<=) assignments in always 
blocks intended as sequential logic

• Do not mix blocking and nonblocking 
assignments in the same always block

• Do not make assignments to the same variable 
in two different always blocks

General Guidelines
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Inferred Latches In Comb Logic
• Each variable within an always block should get  

assigned a value under all possible conditions
– Otherwise, the compiler assumes that the last value 

should be used, and will create a latch

reg dout;  
always @(din, c)  
begin 
 /* dout not always assigned  
     a value; latch inferred */ 
  if (c == 1'b1) 
    dout = din; 
end  

reg dout;  
always @(din, c)  
begin 
   /* dout assigned a value in both   
      conditions, latch not inferred */ 
  if (c == 1'b1)  
    dout = din;  
  else              
    dout = ~din; 
end  
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Verilog Code for ’163 Counter
module counter (CLK, CLR_L, LD_L, ENP, ENT, D, Q, RC0);
   input CLK, CLR_L, LD_L, ENP, ENT;
   input [3:0] D;
   output reg [3:0] Q;
   output reg RC0;

   always @ (posedge CLK)
      if (CLR_L ==0)   Q <= 4'b0;
      else if (LD_L == 0)   Q <= D;
      else if ((ENT ==1) && (ENP ==1))  Q <= Q+1;
      else     Q <= Q;

   always @ (Q, ENT)
      if ((ENT == 1) && (Q == 4'd15)) RC0 = 1;
      else     RC0 = 0;
endmodule
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Sequential Logic
• Many logic functions require information about 

the past in addition to the current inputs
– Vending machine controller
– Traffic light system
– Microprocessor control unit

• Such sequential logic circuits are implemented 
using combinational logic and storage

• One important sequential logic circuit is a 
Finite State Machine (FSM)
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Finite State Machine

• The state embodies the condition of the system 
at this particular time

• The combinational logic determines the output  
and next state values

• The output values may depend only on the 
current state value, or on the current state and 
input values 14
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Elements of a FSM
1. A finite number of states
2. A finite number of inputs
3. A finite number of outputs
4. A specification of all 

state transitions
5. A specification of the output values

Described by a state diagram
• Inputs and current state trigger state transitions
• Output changes triggered by changes in 

• Current state, or 
• Current state + inputs
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FSM: General Form

•••

•••
•••

•••
•••
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 Moore Machine

Outputs depend on 
current state value •••

•••

•••
•••Inputs
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Mealy Machine 
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Outputs depend on input 
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FSM Design Procedure
(1) Understand the problem statement and 

determine inputs and outputs

(2) Identify states and create a state diagram

(3) Determine the number of required D FFs

(4) Implement combinational logic for outputs 
and next state

(5) Simulate the circuit to test its operation
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State Diagram
• Visual specification of a FSM

• Bubble for every state

• Arcs showing state transitions

• Input values shown on the arcs

• Output values shown within the bubbles 
(Moore) or on the arcs (Mealy)

• Clock input not shown (always present)
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Moore State Diagram
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Moore FSM
Reset
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0
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• 1 input, 1 output, 3 states
• Bubble for each state
• State transitions (arcs) for each input value
• Input values on the arcs
• Output values within the bubbles
• Starts at S0 when Reset asserted 
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Mealy State Diagram
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Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM

• 1 input, 1 output, 2 states
• Bubble for each state
• State transitions (arcs) for each input value
• Input values on the arcs (first number)
• Output values on the arcs (second number)
• Starts at S0 when Reset asserted 
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Example FSM: Pattern Detector
• Monitors the input, and outputs a 1 whenever a 

specified input pattern is detected

• Example: Output a 1 whenever 111 is detected 
on the input for 3 consecutive clock cycles
– Overlapping patterns also detected (1111...)

• Input In
• Output Out
• Reset causes FSM to start in initial state
• Clock input not shown (always present) 
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111 Pattern Detector:  Moore State Diagram
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111 Pattern Detector:  Mealy State Diagram
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Example FSM: Pushbutton Lock
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• Two pushbutton inputs, X1 and X2

• One output, UL (“Unlock”)

• UL = 1 when X1 is pushed, followed by X2 being 
pushed twice (X1, X2, X2)

• Represent X1 and X2 as two bit input
– 00: neither button pushed
– 01: X2 pushed
– 10: X1 pushed
– 11: both pushed simultaneously 



Lecture 8:

Pushbutton Lock:  Moore State Diagram
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Pushbutton Lock:  Mealy State Diagram
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Next Time

More Finite State Machines

29




