ECE 2300
 Digital Logic \& Computer Organization Fall 2016

More Combinational Building Blocks

Cornell University

Combinational Building Blocks

- More complex functions built from basic gates
- Multiplexers
- Decoders
- Exclusive OR (XOR)
- Comparators
- Priority encoders
- Tristate drivers
- Typically tens to hundreds of transistors
- Medium Scale Integration (MSI)
- Building blocks for digital systems

Multiplexer ("mux")

- Connects one of n inputs to the output
- Useful when multiple data sources need to be routed to a single destination
- Example: select 1-of-n registers as input to the ALU

Decoder

- n inputs, 2^{n} outputs
- Each output corresponds to a unique input value
- At most one output asserted at a time

2-to-4 Decoder

A_{1}	A_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$
\begin{aligned}
& Y_{0}=A_{1} \cdot A_{0}{ }^{\prime} \\
& Y_{1}=A_{1} \cdot A_{0} \\
& Y_{2}=A_{1} \cdot A_{0}{ }^{\prime} \\
& Y_{3}=A_{1} \cdot A_{0}
\end{aligned}
$$

Lecture 5: 6

2-to-4 Decoder with Enable

Example Decoder Applications

- Microprocessor instruction decoding
- Select the appropriate arithmetic operation depending on the decoded instruction type
- Memories
- Select one of n banks of memory chips to read/write
- Select one of n rows of memory cells within a memory chip to read/write
- Input/output systems
- Select one of n I/O devices to read/write

Example: Memory Decoding

- 2^{n} memory locations spread across 4 chips
-2^{n-2} locations per chip
- 2 address bits select the chip

- Chip Select (CS)
- Outputs of chips that are not selected are in $\mathrm{Hi}-\mathrm{Z}$ state (later)
- n-2 address bits select row within the chip

Logic Functions Using Decoders

- $\mathrm{n}: 2^{\mathrm{n}}$ decoder can be used to implement any function of n variables
- Connect variables to inputs
- Appropriate minterms summed using extra gates to form the function

Logic Functions Using Decoders

- $F 1$ = $A^{\prime} B^{\prime} C D+A^{\prime} B^{\prime} D+A B C D$
- F 2 = $A B C^{\prime} D^{\prime}+\mathrm{ABC}$
- F 3 = $A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}$

XOR Gate

X	Y	$\mathrm{X} \oplus \mathrm{Y}$	$(\mathrm{X} \oplus \mathrm{Y})^{\prime}$
0	0	$\mathbf{0}$	$\mathbf{1}$
0	1	$\mathbf{1}$	$\mathbf{0}$
1	0	$\mathbf{1}$	$\mathbf{0}$
1	1	$\mathbf{0}$	$\mathbf{1}$

- Same as an OR gate, except when inputs are 1
- Used for comparisons, error checking
- XNOR: complemented version of XOR

XOR Gate Implementations

$$
F=X \cdot Y^{\prime}+X^{\prime} \cdot Y
$$

$$
\begin{aligned}
F & =X \cdot Y^{\prime}+X^{\prime} \cdot Y \\
& =X \cdot X^{\prime}+X \cdot Y^{\prime}+Y \cdot Y^{\prime}+X^{\prime} \cdot Y \\
& =X \cdot\left(X^{\prime}+Y^{\prime}\right)+Y \cdot\left(X^{\prime}+Y^{\prime}\right) \\
& =X \cdot(X \cdot Y)^{\prime}+Y \cdot(X \cdot Y)^{\prime}
\end{aligned}
$$

Equality Comparators Using XOR

1-bit comparator

4-bit comparator

Encoders

- Opposite of decoders
- 2^{n} inputs and n outputs

What if multiple inputs are asserted?

Priority Encoder

- Highest numbered inputs have priority
- Example: 4-to-2 priority encoder

$I 3$	$I 2$	$I 1$	$I 0$	$Y 1$	$Y 0$	None
1	X	X	X	1	1	0
0	1	X	X	1	0	0
0	0	1	X	0	1	0
0	0	0	1	0	0	0
0	0	0	0	0	0	1

Example: Microprocessor Interrupts

- In order for devices to get service, they interrupt the microprocessor
- Most important requests are given priority

Multi-Drop Buses

- Multi-drop buses are a low-cost way to communicate data among digital devices
- Components of a multi-drop bus
- Set of wires to connect the nodes
- Special circuits for sending and receiving bus data
- Control logic that decides who is allowed to send

Tri-State Drivers

- Along with 0 and 1 , there is a third $\mathrm{Hi}-\mathrm{Z}$ output
- Output "floats" - no connection to supply or ground

EN	A	OUT
0	0	$\mathrm{Hi}-\mathrm{Z}$
0	1	$\mathrm{Hi}-\mathrm{Z}$
1	0	0
1	1	1

- Used to drive a multi-drop bus
- Only one node drives the bus, others in Hi-Z state

Tri-State Drivers

E	A	B	C	D	Q1	Q2	OUT
N							
L	L	H	H	L	off	off	Hi-Z
L	H	H	H	L	off	off	Hi-Z
H	L	L	H	H	on	off	L
H	H	L	L	L	off	on	H

Variations of Tri-State Drivers

Transceiver

- Data can flow in either direction

G_L	DIR	Action
0	0	AヶB
0	1	$\mathrm{~A} \rightarrow \mathrm{~B}$
1	X	$\mathrm{A}, \mathrm{B} \mathrm{Hi}-\mathrm{Z}$

Before Next Class

- H\&H 3.1-3.2

Next Time

Sequential Logic: Clocks, Latches, Flip-Flops

