ECE 2300
 Digital Logic \& Computer Organization
 Fall 2016

Course Overview

Professor Dave Albonesi
School of Electrical and Computer Engineering

Textbook

- Get $2^{\text {nd }}$ edition
- Not the ARM version
- Copies on reserve at Uris
- eBook available
- Link on Blackboard
- Up to 10 simultaneous users

Course Content

- Binary numbers and logic gates
- Boolean algebra and combinational logic
- Sequential logic and state machines
- Binary arithmetic
- Memories

Digital
logic

- Instruction set architecture
- Processor organization

Computer

 organization- Caches and virtual memory
- Input/output
- Case studies

Where This Course Sits in the "Stack"

Application programming	
System software (compilers, OS)	
Instruction set architecture	
Chip design	Computer organization
Digital logic design	
Electronic circuits	
Devices	
Atomic physics	

Computer Science

Computer Engineering

Electrical Engineering

Digital Logic is Everywhere

Societal Impact of Computers

- Communication
- Entertainment
- Productivity
- Personal assistance
- Disease control
- Drug design
- Health management
- Brain science
- Climate science
- Energy
- Astrophysics
- Materials science
- Ocean currents
- Chemical processes
- Weather forecasting
- Nuclear physics
- Oil and gas exploration
- Aircraft design
- Elderly assistance
- Combustion systems
- Fluid dynamics
- Finance
- Environmental research
- Genetics

Binary Digital Systems

Digital system
-Finite number of values

Binary (base 2) system
-Uses two states: 0 and 1

- Basic unit of information: the binary digit, or bit
- Two values: 0 and 1
- 0 and 1 represented by voltages ${ }^{2 V} T^{\text {" }} 1$ " ov 1"0"
- Other options besides voltage, such as light, magnetism, trapped electrons, ...

0 and 1 Don't Have to be Exact

- 0 and 1 represented by voltage ranges (logic levels)
- Electronic circuits don't have to be perfect

- Can have some noise and the system still works

Representing >2 Values

- Use multiple bits
- A collection of 2 bits gives 4 possible values
- 00, 01, 10, 11
- A collection of 3 bits gives 8 possible values
- 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits gives 2^{n} possible values

Positional Number Representation

- Recall positional notation for decimal numbers

- Similar positional system for binary

base 2
(binary)

Positional Number Representation

- An n-bit binary number represents 2^{n} values
- From decimal 0 to $\mathbf{2 n}^{\mathbf{n}} \mathbf{- 1}$

2^{2}	2^{1}	2^{0}	decimal value
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Logic Gates

- Take one or more binary inputs and produce a binary output

NOT Gate
NOT $\mathbf{X}, I X, \bar{X}, X^{\prime}$

AND Gate
A AND B, A•B

OR Gate
A OR B, A+B

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

Lecture 1: 24

Larger Gates

- AND/OR can take any number of inputs
- AND = 1 if all inputs are 1
$-O R=1$ if any input is 1

Can Use to Build a 1-bit Adder...

- Inputs: A, B and Cin (carry-in)
- Outputs: S (sum) and Cout (carry-out)

A	B	$C_{\text {in }}$	S	$C_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A Larger Adder...

Lecture 1: 27

A Programmable Processor...

A Complete Computer

Lecture 1: 29

Before Next Class

- H\&H 1.1-1.4.2, 1.5-1.6.2, 2.1-2.3

Next Time

Switching Algebra

