ECE 2300 Digital Logic & Computer Organization Fall 2016

Course Overview

Professor Dave Albonesi School of Electrical and Computer Engineering

Cornell University

Textbook

- Get 2nd edition
- Not the ARM version
- Copies on reserve at Uris
- eBook available
 - Link on Blackboard
 - Up to 10 simultaneous users

Course Content

- Binary numbers and logic gates
- Boolean algebra and combinational logic
- Sequential logic and state machines
- Binary arithmetic
- Memories
- Instruction set architecture
- Processor organization
- Caches and virtual memory
- Input/output
- Case studies

Computer organization

Digital

logic

Where This Course Sits in the "Stack"

higher levels of abstraction

Digital Logic is Everywhere

Societal Impact of Computers

- Communication
- Entertainment
- Productivity
- Personal assistance
- Disease control
- Drug design
- Health management
- Brain science
- Climate science
- Energy
- Astrophysics
- Materials science

- Ocean currents
- Chemical processes
- Weather forecasting
- Nuclear physics
- Oil and gas exploration
- Aircraft design
- Elderly assistance
- Combustion systems
- Fluid dynamics
- Finance
- Environmental research
- Genetics

Binary Digital Systems

Digital systemFinite number of values

Binary (base 2) system •Uses two states: 0 and 1

- Basic unit of information: the binary digit, or bit
 - Two values: 0 and 1

• Other options besides voltage, such as light, magnetism, trapped electrons, ... Lecture 1: 19

0 and 1 Don't Have to be Exact

- 0 and 1 represented by voltage ranges (logic levels)
- Electronic circuits don't have to be perfect
- Can have some noise and the system still works

Representing >2 Values

- Use multiple bits
- A collection of 2 bits gives 4 possible values
 00, 01, 10, 11
- A collection of 3 bits gives 8 possible values
 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits gives 2ⁿ possible values

Positional Number Representation

Recall positional notation for decimal numbers

Similar positional system for binary

$$\begin{array}{c} 101 & base 2 \\ 2^2 & 2^1 & 2^0 \end{array}$$
 (binary)
1x4 + 0x2 + 1x1 = 5

Positional Number Representation

- An n-bit binary number represents 2ⁿ values
 - From decimal 0 to 2ⁿ-1

2 ²	2 ¹	2 ⁰	decimal value
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Logic Gates

Take one or more binary inputs and produce a binary output

Larger Gates

- AND/OR can take any number of inputs
 - AND = 1 if all inputs are 1
 - OR = 1 if any input is 1

Can Use to Build a 1-bit Adder...

- Inputs: A, B and C_{in} (carry-in)
- Outputs: S (sum) and Cout (carry-out)

A Larger Adder...

A Programmable Processor...

A Complete Computer

Before Next Class

• H&H 1.1-1.4.2, 1.5-1.6.2, 2.1-2.3

Next Time

Switching Algebra