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Quotable Quotes

“Anyone who attempts to generate random 

numbers by deterministic means is, of 

course, living in a state of sin.”

John von Neumann

Hardware-oriented 
security!!!

E. C. K.

http://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif
http://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif


Errors in the RFID Codes

• Random errors: the bit error probabilities are 
independent or nearly independent of each other.  
Example: thermal noise; interferences.

• Burst errors: the bit error occurs sequentially in time 
or as groups of “stuck-at”.  Example: weak signal 
when the antenna is detuned or scratch in DVD

• Impulse errors: large blocks of the data are full of 
random errors.  Example: transmission collision; 
reader interference.

Error correction  Data Redundancy!!!



Levels of Error Correction Code (ECC)

• Repetition code: based on majority vote

– Very inefficient in code rate

– Fast recovery

– No assumption on the position of bits in each packet

• Forward correction code

– Bit-level: Hamming code: popular in memory

– Block code: Reed-Solomon code: popular in serial storage 
and communication channels

• Automatic repeat request (ARQ)

– Stop and wait

– Continuous duplex: popular in multi-level circuits (MLC)



Error Correction System

• Probability of error: 
– probability of uncorrectable errors: PUE

– probability that the channel will change a symbol during 
the processing or transmission: PSE.

– PUE = PSE if there is no error correction system.



Bit-Level Hamming Code Example

b7 b6 b5 b4 b3 b2 b1

Data Bits Check Bits

A B C D E F G

0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 1

2 0 0 1 0 1 0 1

3 0 0 1 1 1 1 0

4 0 1 0 0 1 1 0

5 0 1 0 1 1 0 1

6 0 1 1 0 0 1 1

7 0 1 1 1 0 0 0

8 1 0 0 0 1 1 1

9 1 0 0 1 1 0 0

10 1 0 1 0 0 1 0

11 1 0 1 1 0 0 1

12 1 1 0 0 0 0 1

13 1 1 0 1 0 1 0

14 1 1 1 0 1 0 0

15 1 1 1 1 1 1 1



Check-Bit Generation Before and After

• (7, 4) Hamming code:
• k = 4: the uncoded bits in a word 
• n = 7: total number of bits in a codeword
• (n – k): the parity check bits 
• t: the number of bits correctable ~ (n – k)/2 

• Bit A, B, C, and D: original bits: 24 = 16 possible 
combinations.

• Bit E, F and G: parity bits: total 27 = 128 possible 
combinations.
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Finding the Error-Bit Address

The position of error always corresponds to a unique combination 
in the truth table!!

The error bit address can be uniquely determined and then 
toggle to correct!!

Bit in Error Eq. 1 Eq. 2 Eq. 3

None True True True

A False False False

B False False True

C False True False

D True False False

E False True True

F True False True

G True True False

CBAE ' DBAF ' DCAG '



Group Activity

Split to four groups of roughly equal sizes with tree protocol:
Write down 6 bits of random numbers.

Group 1: For one bit correctable, how many bits need to be 
added to the 4-bit word in the majority vote scheme?

Group 2: Why is (7,4) code much more efficient than the majority 
vote?

Group 3: Hard drive (read by a magnetic head) has very high bit 
error rate (~ 0.05 to 0.1),  should we use majority vote or 
Hamming code

Group 4: DNA may contain error…  What does nature do?
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Criteria to Generate the Check Bits

• Original Word ABCD: each word can 
be differed by only one bit: if one 
bit is wrong, it will still be legal.

• If we add just a parity bit, then each 
word is differed by at least 2 bits!  If 
only one bit is wrong, then it will 
become an illegal word.

• However, two words with one 
parity bit can go to the same illegal 
word, so when we have the wrong 
word, we cannot distinguish where 
it is from.  

Original Word 1: 00101
Original Word 2: 00110
Received Word: 00100

Data Bits Parity Bit

A B C D E

0 0 0 0 0 0

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 1

5 0 1 0 1 0

6 0 1 1 0 0

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 0

10 1 0 1 0 0

11 1 0 1 1 1

12 1 1 0 0 0

13 1 1 0 1 1

14 1 1 1 0 1

15 1 1 1 1 0

DCBA 

“Distance” between legal codes can be increased by check bits!!



Bit “Distance” in Legal Words

Intuitively, if we are expecting m bits can be in error, 
then the original legal words (plus whatever check bits 
added):

• Need to have at least distance m+1 for the error to be 
detectable!

• Need to have at least distance 2m+1 for the error to 
be correctable! 

• This does not prescribe how efficient is the detection 
or correction, but just whether there is no ambiguity 
when we receive a word containing at most m-bit 
errors!



Hamming Distance of Legal Words

• The minimum 
“Hamming” distance 
is defined as the 
smallest number of 
places that any two 
codewords (block 
words) in the 
codebook differ.

• Error correction code 
is to add check bits to 
enlarge that distance!



Further Reading on Hamming Distance 
and Quad Logic

Richard Hamming
(1915 – 1998)

• R. W. Hamming, Coding and information theory; 2nd ed. 
Richard W. Hamming , Prentice Hall, 1986 

• Z. Kohavi, Switching and finite automata theory, McGraw-Hill,  
1970, 1987 (Coding and quad logic)



Detectability and Correctability

For a (n,k) coding scheme (2n codewords to represent 2k data)

• Assume is the minimal distance between 
codewords

• n – k – 1  of error bits will be detectable (or at least 2t 
number of error bits will be detectable)

• t number of error bits will be correctable
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Exercise: How many bits are less than Hamming distance 2 from (7,4) coding scheme? 

Exercise: How many bits are less than Hamming distance 4 from (n,k) coding scheme? 



Shannon Coding Limits

The Shannon limit was posted in 1948, but only until 
Reed-Solomon coding is published in 1960, practical, 
efficient coding is available.
• C: Upper limit to the number of bits per second that can be 

reliably transmitted across a channel

• W: channel bandwidth in Hz;  R: transmitted bit rate (bits/s)

• S: received signal power

• N: additive  noise power

• Eb: signal energy per bit

• N0: noise power level in W/Hz
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“I just wondered 
how things were 
put together.”

Claude Shannon 
(1916 -2001):



Transmission Rate
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• For the accomplished transmission rate R 
(bits/sec), if

– R < C: Arbitrarily small error rate can be achieved

– R > C: Not possible to achieve reliable error rate 
no matter what code is used.



Probability of Random Error

• Probability of uncorrectable errors: PUE

• Probability that the channel will change a symbol 
during the processing or transmission: PSE

• Assume random errors are uncorrelated (no burst)
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• Another way to measure error probability: corrected 
bit error rate

— CBER = the reciprocal of the expected number of 
correct bits between uncorrectable errors



RS Code Performance Curves

• RS(255, k) code

– k = 244; t =10

– k = 253; t = 1

Notice that within reasonably small 
number of check bits (< 10 check bits for 
244 data bits), if PSE is larger than 0.1, 
ECC does not perform well at all!!! 

System performance of Reed-Solomon (RS) Block error correction code



Bit-Error-Rate Curves

Example: For RS(255, 235) code with PSE = 10-3, CBER = 10-17.   That is, 
on average 1 error will happen after 1017 bits read.  For a 1Gbit/s 
channel, this takes about 3 years!



Hamming Codes

• To detect 2-bit errors and correct 1-bit error by parity 
bit locations, the block length n = 2r – 1 and message 
length k = 2r – r – 1  forms (n, k) Hamming code.

• Coding efficiency  = k/n

Total bit n Data bit k Redundant bit n - k Hamming code Efficiency 

3 1 2 (3, 1) triple 
repetition code

0.333

7 4 3 (7, 4) 0.571

15 11 4 (15, 11) 0.733

31 26 5 (31, 26) 0.839

255 248 8 (255, 248) 0.972
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Hash Function: Lossy Compression

• For k > n, if x  2k and y = h(x)  2n, the hash 
function (or lossy compression) is the mapping that 
guarantee: if h(x1)  h(x2), then x1  x2

     nnk
f 1,01,01,0: 

Ways to see hash function

• Compiler: efficient use 
and search of variable 
addresses

• Error correction code

• Cryptography



Collision or Degeneracy in Hash Function

• When x1  x2, but h(x1) = h(x2), this is called “collision” 
or “degeneracy”

• For ECC, all errors in x (defined by distance m from the 
word x) should map into the same valid y = h(x), or they 
are all “collided”.



Hash Function in ECC

• All x can be compressed into a unique y = h(x)

• For correctability, all errors in x (defined by distance m 
from the word x), and ONLY those words, map into the 
same valid y = h(x)

01

0001

1101

1001

0000

1011

Word

• Say for 5 bits mapping into 4 bits, this is impossible 
from the pigeon-hole theory, as least 24  5 is needed 
for x = 25. 

• But 27 > 24  7, so (7,4) can have one-bit correctability



Hash Function in Cryptography

• For cryptography, the hash function must be:

– Preimage resistant (One Way): for all y, it is computationally 
infeasible to find any preimage x such that h(x) = y.

– Collision resistant: it is computationally infeasible to find any 
x1 and x2 such that when x1  x2, h(x1) = h(x2).

• Any hash mapping can be thought as a matrix operation 
of (k, n)   (n, 1) = (k, 1)
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Class Activity: Observation of the Taboo Game

• Hash function?  What is collision?

• Private channels: for authentic listeners or for 
eavesdroppers?

• Use of “association” in addition to hash function: when 
“if h(x1)  h(x2), then x1  x2 “ is violated, it can be 
treated as “noises”.



One Time Pad (OTP)

• Modular addition of “message” (plaintext) and “pad” 
(key) of equal length

• Say if A = 0, B= 1, …, Z = 25, OTP is 

ciphertext = (plaintext + key) mod 26

or c = (p + k) mode 26

H E L L O Plaintext

7 4 11 11 14 p

X M C K L key

23 12 2 10 11 k

4 16 13 21 25 (p + k)mod26

E Q N V Z ciphertext



Restriction of Pad in OTP

• Pad has the SAME length as the plaintext

• Perfectly random pad codes (say, if the pad is “AAAAA”, 
all secrets will be revealed)

• Pad is entirely secure (the attacker has NO information 
on pad)

• Pad can only be used ONCE (to avoid data remanence)

If all four restrictions are satisfied, OTP is 
information-theoretically secure (perfectly secure)!!!



Properties of One Time Pad

• Impossible to crack (the ciphertext contains NO information of the 
plaintext).

• If you only have a ciphertext but do not know the key, the 
ciphertext can be translated into ANY messages that are equally 
likely.

• Immune to brute-force attack: if the attacker tries EVERY possible 
key, he will get ALL possible plain texts with equal probability.

• If the attacker knows some part of the plaintext, it will help to 
decipher the other part.

• However, any practical consideration introduce potential 
vulnerability (if pad is so secure, why not use that as message?)



Cyclic Hash Function Generation

• Repeated use of hash mapping (say 1,024-bit key is 
used 1,024 times generate a 1M-bit key) can be 
compromised easily.

• For k = 512 and n = 160, a message m is padded and 
decomposed to blocks of mi of bit length k

• hi is defined as: hi = f(mi, hi-1)

• h0 is the initiation vector

101 110 011 Plaintext

101 101 101 Repeated key

000 011 110 Ciphertext

101 110 011 Plaintext

110 110 101 Repeated key

011 110 110 Ciphertext

Repeated hash function Cyclic hash function



Most Efficient Binary Operations 

• XOR (one-to-one mapping with given key)

• Shift (rotation, or times/divides by 2)

• modular addition: (p + k) mod 2m (XOR is bitwise mod 2)



Cyclic Redundancy Check (CRC) Codes
11010011101100 000 <--- input right padded by 3 bits 

1011               <--- divisor 

01100011101100 000 <--- result 

1011              <--- divisor ... 

00111011101100 000 

1011 

00010111101100 000 

1011 

00000001101100 000 

1011 

00000000110100 000 

1011 

00000000011000 000 

1011 

00000000001110 000 

1011 

00000000000101 000 

101 1 -----------------

00000000000000 100 <--- remainder (3 bits)

Cyclic Redundancy Check (CRC):
Very good in detecting errors; 
but less efficient in error 
correction.



CRC Error Detection Properties

• Often expressed in “generator polynomial over integer 
modulo 2”

• A divisor key of 1100001101 is x9 + x8 + x3 + x2 +1.

• A key of length r (or polynomial of rank r) will increase 
the Hamming distance between any two words, in the 
best case, r – 1.

• In the best case, the probability of undetectable error is 
1/(2r-1) 

• When r > 4, CRC can detect all single and double bit 
faults, and most of the burst errors (continuous stuck-at 
“0” or “1”)
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Desirable Security and Privacy

• Identification

• Authentication

• Privacy/indistinguishability

• Forward security from tampered tags to break other 
tags

• Delegation/restriction in tag reuse

• Proof of existence

• Distance bounding

• Synchronization of key updates



Classes of Security and Privacy

Identification

Authentication Privacy

Distance 
Bounding

Proof of 
Existence

Forward 
Security

Delegation 
and 

Restriction

Synchro-
nization

Class 0

Class 1

Class 
2 - 4



Threats Against RFID Systems (1)

Method of 
Attack

Tag Wireless Channel Reader/Backend

Passive reading - Eavesdropping
(encryption before 
transmission)

-

Active reading Tag reading by 
manipulation of 
tag communication
from a fake reader 
(reader 
authentication)

Replay (challenge and 
response auth.)
Relay (distance 
bounding or shielding)
Modification (integrity
checking)

Reading reader’s 
command to 
manipulate 
communication
from a fake tag
(tag 
authentication)

Rewriting Tag rewriting
(authentication or 
memory lock)
Virus/malware to 
infect other tags

- Reader rewriting 
by fake tag (tag 
authentication)
Virus/malware to 
rewrite reader 
registers



Threats Against RFID Systems (2)

Method of 
Attack

Tag Wireless 
Channel

Reader/Backend

Cloning Tag cloning 
(authentication, 
tamper-proof, physical 
unclonable functions)

- Reader cloning

Destruction
Denial of 
Service

Wireless destruction 
(kill protection)
Denial of reading

Jamming (no 
real solution)

Wireless 
destruction
Denial of operation

Scanning and 
tracking

Tag scanning and 
tracking (physical 
shielding or 
encryption)

- -

Side channel Wireless side channel 
analysis (side channel 
proofing)

- Wireless side 
channel analysis



Lightweight Cryptography for RFID

• Tags have few GEs, so no general public-key 
computation possible.

• CRC-16 for authentication and 32-bit access password 
for XOR encryption



ElGamal Tag Re-Encryption

• An initial E(ID, r) is stored on the tag, where r is a 
random number agreed and known by the reader, and 
is used to encrypt the ID.  

• The encrypted scheme will satisfy the hash function 
lossy compression and error correction properties 
simultaneously. 

• After reader retrieving the tag E(ID, r), a new E(ID, r’), 
where r’  r and is randomly chosen, is rewritten to the 
tag (the re-encryption step)

• r can be linked to “password”, “date” or “group ID”



Parity Learning with Noise

• An attacker tries to guess a function f(x) from given 
trials of (x, f(x))

• A simple example: f (x) computes the parity of bits at 
selected fixed location of x (f is the binary map of bit 
selection, and then perform XOR).

• If sufficient (x, f(x)) is given, Gaussian elimination can be 
used to determine f(x)

• To prevent attacker learning, a noise y can be injected.  
Instead of presenting (x, f(x)), (x, y) is presented where 
y = f(x) most of the time, but = 1 – f(x) with some small 
probability.



Class Activity: Parity Learning 

• I have a secret key of 3 digits with non-repeating digits 
(entropy = 720, very small)

• You guess a number, and I will reply:

– “a”: One of your guessed digits is correct and at the right 
place

– “b”: One of your guessed digits appears in my key but not at 
the right place



Challenge and Response Authentication 
(HB Protocol)

• Reader R knows secret key (x, y). Tag T knows secret key 
(x, y, ) and has a “biased random bit”  (noise) with 
Prob(=1) =  and 0 <  << 1/2.

• x and y are secret keys  {0, 1}k

• Challenge and response authentication:

1. Tag T selects random b  {0, 1}k (b is called the blinding 
factor) and sends b to reader

2. Reader R receives b and selects a (a is called the challenge) 
and sends a to the tag

3. Tag T receives a and computes z = (ax)(by).  Tag T 
sends z to reader

4. Reader R receives z and accepts it if z = (ax)(by).  Note: 
may need majority vote here



Physical Unclonable Function (PUF)

• A secret key or signature not assigned by user or stored 
in any data base, but is generated from 
“uncontrollable” but “repeatable” part of the hardware, 
such as timing and threshold voltage variations.

• This secret key is called physical unclonable function 
(PUF), and is always transmitted under encryption

• PUF can prevent “fire sale” and malware that attacks 
central data base.



PUF Implementations

• Timing channel

• SRAM in low VDD

• Flash memory

– Dopant fluctuation

– Oxide variation

– Trap generation (stuck-at by bias-temperature instability (BTI) 
and random by random telegraph noise (RTN))

Suh and Devadas, 2007



Side Channel Attack

• Side channels: when computation and communication 
are performed, there will be traces left in temperature 
OR spectrum

• Used in battles and tactics in history

• In World War II, side channels of radar and radios are 
extensively investigated

• Reduce the search space of the attackers



Outline

• Detectable and correctable digital codes

• Error-correction code (ECC) – an Example

• Hamming distance and Shannon theory

• Hash function and CRC codes

• Security and privacy in RFID systems

• Circuits implementation



Constructing Error Correction Circuits

• Enabled by the digital system: only some values are 
allowed.  Error correction means tremendous S/N 
gain in the analog sense, which is NOT likely in analog 
circuits.

• Broadly used in:

– Wired and wireless communication channels

– A/D data converters

– Memory circuits

• Cannot be applied yet in generic logic circuits 
without large penalty: we have assumed correct bit 
location in space and time!!



Mathematical Forms of Coding 

• We will use Hamming Code as an example, but applicable to 
RS and BCH codes with multi-bit error correction.

• Assume in the Hamming C(7, 4) code in the previous example
– The data vector of length k = 4: m

– The codeword of length n = 7: c

– A generator matrix G exists with (74) entries such that c = mG
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Error, Syndrome and Parity Matrix
• Let e be the error vector, the read vector r of the memory becomes:

r = c + e

• In decoding with correction, the syndrome is obtained as:

s = rHT

• The parity matrix H is constructed to satisfy

GHT = 0
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Ex: c = (0110011)• There is an infinite number 
of equivalent ones exists.  
Choice here is to let the 
syndrome to become the 
address bit where the error 
occurs.

Notice: it is 1 – 7 in the 
column vector



Uniqueness of Syndrome by Error

• The syndrome is univocally determined by the error vector e.

• The i-th column of H represents the syndrome for an error in the i-th
position of vector r.
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Majority and Cyclic Error Correction Circuits
• Matrix form is general, but the algorithm takes the multiplication of a large 

matrix, which may not be fast or small enough for memory blocks.

• Other forms of error correction circuits: majority (Reed-Muller, or RM); cyclic 
(Reed-Solomon, or RS); cyclic (Bose-ray-Chauduri-Hocquenghem, or BCH)
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Reed-Muller R(8,4) code:

• m = (a0, a1, a2, a3)

• c = mG = (c0, c1, c2, c3, c4, c5, c6, c7)

• r = c + e

• d is then obtained from selective majority operations.



RM Majority Decoding
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• d1 = maj(c0 + c4, c2 + c6, c3 + c7, c1 + c5), etc.
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

752

642

312

202

cca

cca

cca

cca









763

543

323

103

cca

cca

cca

cca









7430

7520

7610

00

ccca

ccca

ccca

ca











Cyclic Decoding

BCH Cyclic code

RS Cyclic code

Λ is the error locator polynomial



What Do You Learn

• Adding check bits can increase the distance between 
legal codeword.

• Error correction coding and Shannon theory

• It is important to have small random error probability 
(< 10-3) to efficiently drive down the uncorrectable 
probability to below 10-17

• Once error correction code is added, often 
encrypting, authentication and watermarking can be 
considered together. 



For Serious Readers

• R. Micheloni, A. Marelli and R. Ravasio, Error Correction Codes 
for Nonvolatile Memories, Springer 2008.

• C. Heegard and S. B. Wicker, Turbo Coding, Kluwer, 1999

• D. MacKay, Information Theory, Inference and Learning 
Algorithms, 2005.

• T. Richardson and R. Urbanke, Modern Coding Theory, 2007.



Questions?

59


