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Handout 06

Dielectric Constant and Refractive Index of 
Semiconductors 

In this lecture you will learn:

• Dielectric constant of solids 
• Interband and Intraband contributions to the dielectric constant of solids
• Interband and Intraband contributions to the loss coefficient of solids
• Linear response functions
• Kramers-Kronig relations
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A charge dipole consists of a negative and a positive charge separated by some 
distance:

d
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Dipole moment of a charge dipole is a vector       such that:p


dQp




Charge Dipole, Dipole Moment, and Polarization Density

Polarization density vector        of a medium consisting of charge dipoles is the 
product of the number N of dipoles per unit volume (i.e. dipole density) and the 
strength of each dipole given by    :
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Dielectric Constant of Materials

Dielectric in an E-fieldDielectric Material (Insulator or 
Intrinsic Semiconductor)
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Material gets polarized when placed in an electric field (i.e. develops charge 
dipoles) because the electron cloud shifts relative to the nuclei
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Polarization density (# of dipoles 
per unit volume times the 
strength of one dipole)
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High Frequency Dielectric Constant of Solids

Consider a sinusoidal E&M wave of frequency  propagating in a solid:
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Where the electric field “phasor” is:
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Similarly, the magnetic field phasor is:

And the two field are related by the two Maxwell equations:
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Faraday’s Law

Ampere’s Law

These two equations together give the dispersion relation of the E&M wave:
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Strategy to Calculate the Dielectric Constant of Materials

1) Start with the Hamiltonian describing the interaction of the electrons with the 
electromagnetic field:
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2) Find out how the electron wavefunctions (i.e. Bloch 
functions) get modified using standard first order 
perturbation theory:

 
m k

kmkmknkn tc
'

',',,new, 
 

3) From the modified wavefunctions, calculate the electron 
charge density, and then the dipole density

The above procedure, although doable, is a little complicated 
and we will use an alternate approach!
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Refractive Index of Solids

The refractive index of a material is defined as:    
o
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The wave dispersion relation is then:
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And the electric field phasor can be written as:
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The refractive index usually has real and imaginary parts:
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The electric field phasor is then:
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The imaginary part of the index describes 
wave decay (or wave amplification if gain 
is present)
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Imaginary Part of the Refractive Index and the Loss Coefficient

We have already seen that stimulated absorption results in a wave to decay in 
a medium (optical loss):
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Where:

But we also have:
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This means the imaginary part of the refractive index is:
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Imaginary Part of the Refractive Index and the Loss Coefficient
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Transitions 
among
all bands 

Transitions between just two bands:
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Transitions among all bands:

The above is a more general and complete expression for the loss coefficient
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High Frequency Dielectric Constant of Solids: Imaginary Part

The refractive index of a material is defined as:    
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Therefore, using the fact that:
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Using the expression for the absorption coefficient we get:

Question: What is the real part of the dielectric constant?
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Linear Response Functions

Linear Response Functions: 

In a linear time invariant (LTI) system, the stimulus phasor S() is related to the 
response phasor R() by a linear response function ():

      SR 

The linear system must satisfy the following two properties:

i) It must be causal (system cannot respond before the stimulus is applied)
ii) A real stimulus S(t) must result in a real response R(t) (with no imaginary 
component)   

The second condition gives:

      "' i

            ""and''* 

Most responses of solids are expressed in terms of linear response functions. 
Examples include: 

 
 
Conductivity:

Dielectric Constant:
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Linear Response Functions and Kramers-Kronig Relations

The two conditions, listed on previous slide, dictate that the real and imaginary parts 
of any response function cannot be independent – they must be RELATED!

      SR        "' i

This relationship between the real and the imaginary parts of the response functions 
is captured by the Kramers-Kronig relations:
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• If one knows the real part for all frequencies, then one can find the imaginary part 
using Kramers-Kronig relations

• Conversely, if one knows the imaginary part for all frequencies, then one can find 
the real part using Kramers-Kronig relations

PROOF OF KRAMERS-KRONIG RELATIONS GIVEN IN APPENDIX

(1)

(2)
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High Frequency Dielectric Constant of Solids: Real Part

We have:

And from the Kramers-Kronig relations we know:
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High Frequency Dielectric Constant of Solids

• The low frequency dielectric constant would also 
include contributions from the lattice (phonons) in polar 
materials (like GaAs, NaCl)

• The most important contributions to the dielectric 
constant will come from those two bands whose energy 
separation is close to the frequency  and where the 
lower band is full and the top band is empty
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Frequency (h)
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Bandgaps and the High Frequency Dielectric Constant
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A Three-Band Example:
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Bandgaps and the High Frequency Dielectric Constant
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Include just two bands and make some very rough estimates:
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 Materials with larger bandgaps will have smaller real part of dielectric constants 
(and, therefore, smaller real part of refractive indices)
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High Frequency Dielectric Constant: Case of Non-Zero Conductivity

k




E
We have obtained an expression for the dielectric constant 
that incorporated interband optical processes

What if the material also contained large densities of electrons 
or holes or both (i.e. what if the material was doped and 
conductive)?

Ef

Go back to Maxwell equations:

    ,, rHirE o
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Faraday’s Law

Ampere’s Law

New term (current density due to electrons or holes or both) 
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Where:
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High Frequency Dielectric Constant: Drude Model for Conductivity
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Drude model for the frequency dependent conductivity:
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The equation for the electron velocity is (assuming 
parabolic/isotropic bands in 3D):

In phasor notation (assuming a sinusoidal electric field):

The current density is:
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(Drude model)
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total

Interband optical 
processes

Intraband optical 
processes

High Frequency Dielectric Constant : Non-Zero Conductivity
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Assuming non-zero densities for both electrons and 
holes the total conductivity becomes:

We have:
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The Plasma Frequency 
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Suppose we have a metal or a n-doped semiconductor for which:
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Where the plasma frequency is defined as:
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For metals:

Hz104~2 15p

For semiconductors:

Hz1010~2 1311 p

(UV-blue light frequency)

(Terahertz frequency)

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

The Complete Absorption Coefficient
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Now that we have the complete dielectric constant, we can find the complete 
absorption coefficient: 

Interband optical 
processes

Intraband optical 
processes
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APPENDIX: Kramers-Kronig Relations (Proof)

The linear response function is ():

            ""and''* 
Causality: 

      "' i

      



''' tSttdttR 

Causality implies that the system cannot exhibit response to an input before the 
input occurs:

Inverse FT gives:      
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which gives:       


t
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Reality: 

Real inputs must result in a real response. This condition gives:

In a linear time invariant (LTI) system, the stimulus phasor S() is related to the 
response phasor R() by:

      SR 

Infinite Frequency Response: 

No physical system can respond at infinite frequencies, so: 

  0
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Kramers-Kronig Relations (Proof)

  0for0  tt

The causality condition is:

The function (), when considered as an analytic function in the complex plane, 
cannot have any  pole in the upper half of the complex plane for the causality 
condition to hold

Consider the following contour integral over the contour shown:
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Since there are no poles in the upper half plane, 
the closed contour contains no poles, and the 
contour integral must be zero
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Kramers-Kronig Relations (Proof)
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Where the following relations have been used to get the second integrals:

        ""and'' 

In cases where the real part of () may not be zero at infinite frequencies, as it 
happened in the case of the dielectric constant, we just repeat the entire procedure 
from the beginning with () – ’(∞) instead of () to get:
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