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Chapter 14 
 
Carrier Density Dependent Index, 
Frequency Chirp and FM 
Modulation, and Frequency 
Linewidth in Semiconductor Lasers 
 
 
14.1 Introduction 
 
14.1.1 Carrier Density Dependent Refractive Index in Semiconductor Lasers: 
In Chapter 6, the following expression was obtained for the dielectric constant of semiconductors, 
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The dielectric constant and the refractive index depend on the electron and hole densities. This 
dependence is explicit in the intraband contribution to the dielectric constant and implicit through the 
carrier distribution functions in the interband contribution. The above expressions are rather 
complicated. In semiconductor laser, changes in the carrier density affect both the gain as well as the 
refractive index. In other words, changes in the carrier density affect both the real and the imaginary 
parts of the refractive index. The complex refractive index is, 

          
c

g
ininnn


2

'"'   

We define a quantity    as follows, 
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The above expression is useful since it can be used to express changes in the real part of the refractive 
index in terms of the material differential gain,   
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The values of    near the peak gain frequency can range anywhere from 2 to 10 for most 

commonly used III-V gain materials with values in the 4 to 7 range being typical. Also, note that the 
refractive index decreases with an increase in the carrier density.  
 
 
14.1.2 Cavity Mode Frequency Shift with a Carrier Density Change: 
In Chapter 12, the following expression was derived for the change in the cavity mode frequency due 
to a change in the cavity refractive index, 
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If the carrier density in the active region changes by n , then the change in the active region 
refractive index is, 
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The corresponding change in the cavity mode frequency is, 
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If the cavity is a Fabry-Perot then the above expression can also be written in terms of the mode group 
velocity gv , 
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For example, in a 1550 nm laser, if 17105 n cm
-3

, 075.a , 6.3gn , 1510~ dngd  cm
2
, 

and 5 , the change in the cavity frequency is 124 GHz which is around 1 nm. Applications that 
require a stable frequency optical source demand that the carrier density in the laser active region be 
free of fluctuations.  
 
 
 

14.2 Direct Current Frequency Modulation in Semiconductor Lasers 
 
14.2.1 Introduction: 
Consider a current modulated laser, as shown below.  

 
 
In Chapter 11, the following expressions were derived for the small signal change in the carrier 
density and the photon density in a response to a current modulation, 
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Suppose the cavity mode frequency is also time dependent, 

     ftieft  2Re   
Then, 
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The above equation describes the frequency modulation (FM) response of the laser. Because of the 
carrier density dependent refractive index, the frequency of the lasing mode is modulated in response 
to a current modulation. We can also write, 
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In time domain, one can write the above expression as, 
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The instantaneous frequency shift is proportional to the rate of change of the photon density or the 
rate of change of the laser output power. Frequency modulation (FM modulation) is also used to 
transfer information in fiber optical networks. In such schemes, detection and information retrieval at 
the receiving end is more complicated compared to the schemes that use intensity modulation.  
 
 
 

14.3 Laser Phase Noise and Laser Frequency Linewidth 
 
14.3.1 Introduction to Phase Noise: 
Consider a sinusoidal signal whose phase is changing with time, 
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The instantaneous frequency is given as, 
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A time varying phase is therefore equivalent to a frequency variation. The term “phase noise” refers to 
a time varying phase with a zero average value for the phase difference, 
     021  tt    

However, the higher order correlation functions of the phase difference are not all zero. For example,  

      02
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The above phase correlation function is closely related to the frequency linewidth of the sinusoidal 
signal, as discussed below. If the phase noise has Gaussian statistics then all higher order correlation 
functions of the phase difference can be written in terms of the second order correlation function 
given above. For example, 
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The double factorial sign represents the product of all odd integers from 1 to 1n .  
 
 
14.3.2 Frequency Spectrum of Signals with Phase Noise: 
The frequency spectrum  S of a sinusoidal signal  tA  is defined as follows, 
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The angled brackets imply ensemble averaging. Ensemble averaging can be replaced by time 
averaging if the signal is ergodic. Suppose, 
     ttAtA oo   cos  

then,  

          tAtA
A

tAtA o

2

2

 
and,

 

               ttttt
A

tAtA ooo
o   cos2cos
2

2
 

The first term in the square brackets goes to zero upon averaging. The second term is, 
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If there is no phase noise then, 
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The frequency spectrum consists of two delta functions at the frequency of the sinusoidal signal. If the 
phase noise is assumed to obey Gaussian statistics, then,  
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A commonly encountered case is when the phase noise correlation represents phase diffusion with the 
following correlation function, 
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The frequency spectrum in this case becomes, 
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In the presence of phase noise, the delta functions have broadened into Lorentzians with a full width 
at half maximum (FWHM) equal to   which is also called the linewidth of the spectrum.   

 
 
14.3.3 Laser Phase Coherence:  
So far our discussion on lasers has been focused on the photon density or the total number of photons 
inside the laser cavity. Lasing was identified with the buildup of a large photon population inside the 
laser cavity above threshold. If this were all there was to lasers then lasers would not have been any 
more interesting than high power incandescent light sources. Laser light has phase coherence. We 
discuss this phase coherence in below.  
 

We assume that the field  rEo


 of the cavity eigenmode is normalized such that, 
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where o  is the cavity mode frequency. The field inside a laser cavity above threshold can be written 
as, 
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Here,  tNp  is the number of photons inside the cavity and  t  is the phase of the field. It is not 

difficult to see, given our normalization of the cavity eigenmode, that the total energy inside the 

cavity will equal  tNpo . Note that the field amplitude is proportional to  tNp . In a 

stimulated emission process, the field of the emitted photon has the same phase as the phase of the 
cavity field that stimulated the transition. Therefore, when photons multiply via stimulated emission 
the phase is preserved. However, the phase of the field of a spontaneously emitted photon has no 
relationship with the phase of the field inside the cavity. Every spontaneously emitted photon has a 
random phase with respect to the phase of the field inside the cavity. Below threshold, the photons 
inside the laser cavity are mostly a result of spontaneous emission and therefore cavity field has no 
well-defined phase. Above threshold, the photons inside the laser cavity are mostly a result of 
stimulated emission and the cavity field, therefore, has a well-defined phase. In addition, the phase 
 t  of the cavity field remains constant for long durations and we call this property “phase 

coherence”. Phase coherence is not unique to laser fields. Phase coherent electromagnetic signals in 
the KHz, MHz and GHz frequency ranges have been around for over a century (e.g. radio waves). But 
phase coherent sources at the optical frequencies were missing until the laser was invented.  
 
14.3.4 Phase Noise, Frequency Spectrum of Optical Fields, and Coherence Time:  
In Section 13.3.2, the frequency spectrum of sinusoidal signals was related to their phase noise. The 
same holds true for optical signals. The interferometric scheme shown below can be used to measure 
the frequency spectrum of optical signals.  

 
The input light is split into two using a 50/50 beam splitter, reflected off mirrors, and then combined 
again with the same beam splitter. The resulting intensity is detected with a photodetector. One of the 
mirrors is movable and is used to introduce a delay in one of the split signals with respect to the other 
one. The average photodetector current  tI  is proportional to the square magnitude of the field 

composed of the optical signal and its time-delayed version, 
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If the optical signal has no amplitude noise, i.e. if, 
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then the frequency spectrum of the optical signal can be written in terms of the detector current, 
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is called the interferogram. The Fourier transform of the interferogram with respect to the delay   
gives the frequency spectrum of the optical signal. Suppose that, 
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First suppose that there is no phase noise. In this case, the interferogram equals, 
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and the frequency spectrum equals, 
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The interferogram is sketched below and shows the interference fringes between the signal and its 
time delayed version that persist forever indicating perfect phase coherence.   

Now suppose the signals has phase noise and the phase noise has Gaussian statistics and the phase 
correlation function is given by, 
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The interferogram is sketched below. The envelope of the interferogram decays exponentially with a 
decay constant equal to 2 . The quantity 1  is called the coherence time of the signal. It is the 
time scale over which the phase of the signal would likely not change. 

 
As the delay   is increased, and the phase of the signal diffuses and the heights of the peaks in the 
interferogram become smaller. The frequency spectrum equals, 




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Note that the FWHM of the spectral density is equal to the inverse of the coherence time. The FWHM 
of the spectral density is used as a measure of the coherence time of an optical signal.  
 
 
14.3.5 Laser Phase Dynamics and Laser Linewidth: 
Consider a laser operating above threshold with a steady state photon number in the cavity equal to  

pN  and we assume that 1pN . The electric field can be written as, 
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In order to study the dynamics of the phase  t  we need to figure out how stimulated and 

spontaneous emission events affect the laser phase. Consider a stimulated emission event at time t . 
Right after the stimulated emission event, the field becomes, 
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Note that the phase of the field has not changed before and after the stimulated emission event. The 
cavity photon number is now one more than the steady state photon number pN . The photon number 

will decay via relaxation oscillations until the photon number again reaches the steady state photon 
number pN .  

 
Now consider a spontaneous emission event at time t . The phase of the field of the added photon is 
not the same as that of the cavity field. Suppose the phase of the field of the added photon is   with 
respect to the phase of the cavity field. Right after the spontaneous emission event, the field is, 
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In graphical representation, the electric field phasor in the complex plane before and after the 
spontaneous emission event are shown in the Figure above. The angle   is to be considered a random 
variable with a uniform probability distribution in the interval  20  . Therefore, 
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Note that the average photon number after the spontaneous emission event is, 
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  1sincos 22
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as expected. The increase in the amplitude of the field after spontaneous emission will decay via 
relaxation oscillations until the cavity field is,  
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The photon number has returned to the steady state value. However, the phase has been shifted by, 
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 sin
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The above analysis shows that each spontaneous emission event “kicks” the phase of the cavity field 

by an amount approximately equal to pNsin . In any time interval  , the total change in the 

phase of the cavity field can be obtained by summing over the contributions from all the spontaneous 
emission events that happen during this interval, 
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Since the phases k  are completely random and uncorrelated, 
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And if   is allowed to be negative then, 
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From the phase correlation function it follows that the frequency spectrum of the laser field is, 
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where the FWHM laser linewidth   is given by, 
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The above expression is the Schawlow-Townes result for the laser linewidth. It expresses the fact that 
the laser linewidth is determined by the spontaneous emission rate since spontaneous emission events 
cause the phase of the cavity field to “diffuse” in time. Unfortunately, the Schawlow-Townes 
expression, although accurate for gas lasers, underestimates the experimentally measured linewidths 
of semiconductor lasers by more than an order of magnitude.  
 
 
14.3.6 Phase Dynamics and Linewidth of Semiconductor Lasers: 
In semiconductor lasers, photon number changes result in carrier density changes which lead to 
refractive index changes and which in turn lead to shifts in the cavity mode frequency. All these 
complicated dynamics are captured by the equation derived earlier in this Chapter, 
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We can think of the time dependent frequency in terms of a time dependent phase, 

   
 

dt

tNd

N
t

dt

td p

p





2


 



Semiconductor Optoelectronics (Farhan Rana, Cornell University) 

 
Consider a spontaneous emission event at time t . Right after the spontaneous emission event the 
cavity field is, 
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The change in the cavity photon number from the steady state value immediately after the 
spontaneous emission event is, 

  cos21cos2 ppp NNN   

The cavity photon number will now undergo relaxation oscillations, in which the carrier density and 
the photon number oscillate 90-degrees out of phase, until the photon number reaches the steady state 
value again. During these relaxation oscillations the cavity mode frequency and the phase changes are 
governed by the equation, 
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Once the relaxation oscillations are over, and the photon number has returned to its steady state value, 
the net change in the phase is, 

  cos2
22 p

p
p

p
N

N
N

N
  

When the relaxation oscillations are over, the cavity field is, 
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The total phase change caused by the spontaneous emission event is, 
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In any time interval  , the total change in the phase of the cavity field can be obtained by summing 
over the contributions from all the spontaneous emission events that happen during this interval, 
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Since the phases k  are completely random and uncorrelated, 
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And if   is allowed to be negative then, 
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It follows that the FWHM of the laser linewidth is, 
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Since values of   are in the 4 to 7 range, the semiconductor laser frequency linewidth is 17 to 50 
times larger than the Schawlow-Townes limit. The additional linewidth broadening is due to phase 
changes that accompany relaxation oscillations because of the carrier density dependent refractive 
index in semiconductors.  


